Skip to main content

Probability Models for Ranking Data

  • Chapter
  • First Online:
Statistical Methods for Ranking Data

Part of the book series: Frontiers in Probability and the Statistical Sciences ((FROPROSTAS))

  • 3364 Accesses

Abstract

Probability modeling for ranking data is an efficient way to understand people’s perception and preference on different objects. Various probability models for ranking data have been developed, particularly in the last decade where many new problems involving a large number of objects emerged. In their review paper on probability models for ranking data, Critchlow et al. (1991) broadly categorized these models into four classes: (1) order statistics models, (2) paired comparison models, (3) distance-based models, and (4) multistage models. Since their publication in 1991, variants of these models and new models have been developed. In this chapter, we will introduce these four classes of models and describe their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note \(e^{-\varepsilon }\) follows an exponential distribution with mean 1.

Bibliography

  • Adkins, L., & Fligner, M. (1998). A non-iterative procedure for maximum likelihood estimation of the parameters of Mallows’ model based on partial rankings. Communications in Statistics: Theory and Methods, 27(9), 2199–2220.

    Article  MATH  MathSciNet  Google Scholar 

  • Allison, P. D., & Christakis, N. A. (1994). Logit models for sets of ranked items. Sociological Methodology, 24, 199–228.

    Article  Google Scholar 

  • Beckett, L. A. (1993). Maximum likelihood estimation in Mallows’ model using partially ranked data. In M. A. Fligner & J. S. Verducci (Eds.), Probability models and statistical analyses for ranking data (pp. 92–108). New York: Springer.

    Chapter  Google Scholar 

  • Beggs, S., Cardell, S., & Hausman, J. (1981). Assessing the potential demand for electric cars. Journal of Econometrics, 16, 1–19.

    Article  Google Scholar 

  • Biernacki, C., & Jacques, J. (2013). A generative model for rank data based on insertion sort algorithm. Computational Statistics and Data Analysis, 58, 162–176.

    Article  MathSciNet  Google Scholar 

  • Bockenholt, U. (1993). Applications of Thurstonian models to ranking data. In M. Fligner & J. Verducci (Eds.), Probability models and statistical analyses for ranking data. New York: Springer.

    Google Scholar 

  • Bradley, R. A., & Terry, M. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika, 39(3/4), 324–345.

    Google Scholar 

  • Brook, D., & Upton, G. (1974). Biases in local government elections due to position on the ballot paper. Applied Statistics, 23, 414–419.

    Article  Google Scholar 

  • Busse, L. M., Orbanz, P., & Buhmann, J. M. (2007). Cluster analysis of heterogeneous rank data. In Proceedings of the 24th International Conference on Machine Learning, ACM New York, NY, USA (pp. 113–120).

    Google Scholar 

  • Chapman, R., & Staelin, R. (1982). Exploiting rank ordered choice set data within the stochastic utility model. Journal of Marketing Research, 19, 288–301.

    Article  Google Scholar 

  • Critchlow, D. (1985). Metric methods for analyzing partially ranked data. New York: Springer.

    Book  MATH  Google Scholar 

  • Critchlow, D., & Verducci, J. (1992). Detecting a trend in paired rankings. Applied Statistics, 41, 17–29.

    Article  MATH  Google Scholar 

  • Critchlow, D. E., Fligner, M. A., Verducci, J. S. (1991). Probability models on rankings. Journal of Mathematical Psychology, 35, 294–318.

    Article  MATH  MathSciNet  Google Scholar 

  • Daniels, H. (1950). Rank correlation and population models. Journal of the Royal Statistical Society Series B, 12, 171–181.

    MATH  MathSciNet  Google Scholar 

  • David, H. A. (1988). The method of paired comparisons. New York: Oxford University Press.

    MATH  Google Scholar 

  • Diaconis, P. (1988). Group representations in probability and statistics. Hayward: Institute of Mathematical Statistics.

    MATH  Google Scholar 

  • Diaconis, P. (1989). A generalization of spectral analysis with application to ranked data. Annals of Statistics, 17, 949–979.

    Article  MATH  MathSciNet  Google Scholar 

  • Doignon, J.-P., Pekec, A., & Regenwetter, M. (2004). The repeated insertion model for rankings: Missing link between two subset choice models. Psychometrika, 69(1), 33–54.

    Article  MathSciNet  Google Scholar 

  • Feigin, P. D. (1993). Modelling and analysing paired ranking data. In M. A. Fligner & J. S. Verducci (Eds.), Probability models and statistical analyses for ranking data (pp. 75–91). New York: Springer.

    Chapter  Google Scholar 

  • Fligner, M. A., & Verducci, J. S. (1986). Distance based ranking models. Journal of the Royal Statistical Society Series B, 48(3), 359–369.

    MATH  MathSciNet  Google Scholar 

  • Fligner, M. A., & Verducci, J. S. (1988). Multi-stage ranking models. Journal of the American Statistical Association, 83, 892–901.

    Article  MATH  MathSciNet  Google Scholar 

  • Fok, D., Paap, R., & van Dijk, B. (2012). A rank-ordered logit model with unobserved heterogeneity in ranking capabilities. Journal of Applied Econometrics, 27, 831–846.

    Article  MathSciNet  Google Scholar 

  • Hausman, J., & Ruud, P. A. (1987). Specifying and testing econometric models for rank-ordered data. Journal of Econometrics, 34, 83–104.

    Article  MATH  MathSciNet  Google Scholar 

  • Henery, R. J. (1981). Permutation probabilities as models for horse races. Journal of the Royal Statistical Society Series B, 43, 86–91.

    MathSciNet  Google Scholar 

  • Henery, R. J. (1983). Permutation probabilities for gamma random variables. Applied Probability, 20, 822–834.

    Article  MATH  MathSciNet  Google Scholar 

  • Joe, H. (2001). Multivariate extreme value distributions and coverage of ranking probabilities. Journal of Mathematical Psychology, 45, 180–188.

    Article  MATH  MathSciNet  Google Scholar 

  • Koop, G., & Poirier, D. J. (1994). Rank-ordered logit models: An empirical analysis of ontario voter preferences. Journal of Applied Econometrics, 9(4), 69–388.

    Article  Google Scholar 

  • Lee, P. H., & Yu, P. L. H. (2012). Mixtures of weighted distance-based models for ranking data with applications in political studies. Computational Statistics and Data Analysis, 56, 2486–2500.

    Article  MATH  MathSciNet  Google Scholar 

  • Luce, R. D. (1959). Individual choice behavior. New York: Wiley.

    MATH  Google Scholar 

  • Mallows, C. L. (1957). Non-null ranking models. I. Biometrika, 44, 114–130.

    Google Scholar 

  • Marden, J. I. (1992). Use of nested orthogonal contrasts in analyzing rank data. Journal of the American Statistical Association, 87, 307–318.

    Article  MathSciNet  Google Scholar 

  • Marden, J. I. (1995). Analyzing and modeling rank data. New York: Chapman Hall.

    MATH  Google Scholar 

  • Marley, A. A. J. (1968). Some probabilistic models of simple choice and ranking. Journal of Mathematical Psychology, 5, 311–332.

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh, P. (1993b). Permutations and regression models. In M. Fligner & J. Verducci (Eds.), Probability models and statistical analyses for ranking data (pp. 196–215). New York: Springer.

    Chapter  Google Scholar 

  • McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105–142). New York: Academic.

    Google Scholar 

  • McFadden, D. (1978). Modeling the choice of residential location. In F. Snickars & J. Weibull (Eds.), Spatial interaction theory and planning models (pp. 75–96). North Holland: Amsterdam.

    Google Scholar 

  • McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied Econometrics, 15, 447–470.

    Article  Google Scholar 

  • Mosteller, F. (1951). Remarks on the method of paired comparisons. I. The least squares solution assuming equal standard deviations and equal correlations. Psychometrika, 16, 3–9.

    Google Scholar 

  • Pendergrass, R. N., & Bradley, R. A. (1960). Ranking in triple comparisons. In O. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to probability and statistics (pp. 331–351). Stanford: Stanford University Press.

    Google Scholar 

  • Savage, I. R. (1956). Contributions to the theory of rank order statistics: The two-sample case. Annals of Mathematical Statistics, 27, 590–615.

    Article  MATH  MathSciNet  Google Scholar 

  • Savage, I. R. (1957). Contributions to the theory of rank order statistics: The “trend” case. Annals of Mathematical Statistics, 28, 968–977.

    Article  MATH  MathSciNet  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68(2), 267–287.

    Article  MathSciNet  Google Scholar 

  • Smith, B. B. (1950). Discussion of Professor Ross’s paper. Journal of the Royal Statistical Society Series B, 12, 53–56.

    Google Scholar 

  • Stern, H. (1990a). A continuum of paired comparisons models. Biometrika, 77, 265–273.

    Article  MATH  MathSciNet  Google Scholar 

  • Stern, H. (1990b). Models for distributions on permutations. Journal of the American Statistical Association, 85, 558–564.

    Article  Google Scholar 

  • Tallis, G., & Dansie, B. (1983). An alternative approach to the analysis of permutations. Applied Statistics, 32, 110–114.

    Article  MATH  Google Scholar 

  • Thurstone, L. L. (1927). A law of comparative judgement. Psychological Reviews, 34, 273–286.

    Article  Google Scholar 

  • Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79(4), 281–299.

    Article  Google Scholar 

  • Xu, L. (2000). A multistage ranking model. Psychometrika, 65(2), 217–231.

    Article  MATH  MathSciNet  Google Scholar 

  • Yellot, J. (1977). The relationship between Luce’s choice axiom, Thurstone’s theory of comparative judgment and the double exponential distribution. Journal of Mathematical Psychology, 15, 109–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Chapter Notes

Chapter Notes

In this chapter, we have introduced several important probability models for ranking data. Extension of order statistics models and distance-based models will be discussed in Chaps. 9 and 11, respectively. Other models not considered here are a variety of exponential family models based on marginals (spectral decomposition of Diaconis (19881989)) or pairwise and higher-way comparisons (inversion models of McCullagh (1993b)), nested orthogonal contrast models (Marden 1992), and models based on insertion sorting (Doignon et al. 2004; Biernacki and Jacques 2013).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alvo, M., Yu, P.L.H. (2014). Probability Models for Ranking Data. In: Statistical Methods for Ranking Data. Frontiers in Probability and the Statistical Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1471-5_8

Download citation

Publish with us

Policies and ethics