Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Dissolved oxygen (DO) plays a vital role in many industrial, physiological, and environmental processes. The electrochemistry is greatly influenced by the amount of dissolved oxygen because of the reduction of molecular oxygen.

A number of chemical and biological reactions in water also depend on the amount of dissolved oxygen. Monitoring the oxygen in ground or wastewater is an important test in water quality and waste treatment. In this chapter we present the electrochemical sensors for measurement of oxygen from the first Clark electrode to the more modern proposal of modified, miniaturized, and solid-state electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang H-T, Zhan X-B, Zheng Z-Y, Wu J-R, English N, Yu X-B, Lin C-C (2012) Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Appl Microbiol Biotechnol 93(1):367–379. doi:10.1007/s00253-011-3448-3

    Article  Google Scholar 

  2. El-Sedawy HF, Hussein MMM, Essam T, El-Tayeb OM, Mohammad FHA Scaling up for the industrial production of rifamycin B.; optimization of the process conditions in bench-scale fermentor. Bulletin of Faculty of Pharmacy, Cairo University (0). doi:10.1016/j.bfopcu.2013.02.002

  3. Bowyer JN, Booth MA, Qin JG, D’Antignana T, Thomson MJS, Stone DAJ (2013) Temperature and dissolved oxygen influence growth and digestive enzyme activities of yellowtail kingfish Seriola lalandi (Valenciennes, 1833). Aquacul Res 1–11. doi:10.1111/are.12146

  4. Evans SM, Koch CJ (2003) Prognostic significance of tumor oxygenation in humans. Cancer Lett 195(1):1–16. doi:10.1016/S0304-3835(03)00012-0

    Article  CAS  Google Scholar 

  5. Pison CM, Wolf JE, Levy PA, Dubois F, Brambilla CG, Paramelle B (1991) Effects of captopril combined with oxygen therapy at rest and on exercise in patients with chronic bronchitis and pulmonary hypertension. Respiration 58(1):9–14

    Article  CAS  Google Scholar 

  6. Rai R, Upadhyay A, Ojha CS, Singh V (2012) Water pollution. In: The Yamuna River Basin, vol 66. Water science and technology library. Springer Netherlands, pp 245–275. doi:10.1007/978-94-007-2001-5_9

  7. Chen Y-P, Liu S-Y, Yu H-Q (2007) A simple and rapid method for measuring dissolved oxygen in waters with gold microelectrode. Anal Chim Acta 598(2):249–253. doi:10.1016/j.aca.2007.07.045

    Article  CAS  Google Scholar 

  8. Ansa-Asare OD, Marr IL, Cresser MS (2000) Evaluation of modelled and measured patterns of dissolved oxygen in a freshwater lake as an indicator of the presence of biodegradable organic pollution. Water Res 34(4):1079–1088. doi:10.1016/S0043-1354(99)00239-0

    Article  CAS  Google Scholar 

  9. Zhao L, Li D, Ma D, Ding Q (2010) An portable intelligent measurement instrument for dissolved oxygen in aquaculture. Sens Lett 8(1):102–108

    Article  CAS  Google Scholar 

  10. Na X, Niu W, Li H, Xie J (2002) A novel dissolved oxygen sensor based on MISFET structure with Pt–LaF3 mixture film. Sensors Actuators B Chem 87(2):222–225. doi:10.1016/S0925-4005(02)00238-1

    Article  CAS  Google Scholar 

  11. Miura N, Hisamoto J, Yamazoe N, Kuwata S, Salardenne J (1989) Solid-state oxygen sensor using sputtered LaF3 film. Sensors Actuators 16(4):301–310. doi:10.1016/0250-6874(89)85001-2

    Article  CAS  Google Scholar 

  12. Hendrikse J, Olthuis W, Bergveld P (1999) The EMOSFET as an oxygen sensor: constant current potentiometry. Sensors Actuators B Chem 59(1):35–41. doi:10.1016/S0925-4005(99)00195-1

    Article  CAS  Google Scholar 

  13. Sun G, Wang H, Zhuangde J, Junqiang R (2011) A potentiometric oxygen sensor based on LaF3 using Pt micro grid as the sensing electrode. In: Nano/Micro Engineered and Molecular Systems (NEMS), 2011 I.E. International Conference on, 20-23 Feb. 2011 pp 53–56. doi:10.1109/nems.2011.6017293

  14. Martınez-Máñez R, Soto J, Lizondo-Sabater J, Garcıa-Breijo E, Gil L, Ibáñez J, Alcaina I, Alvarez S (2004) New potentiomentric dissolved oxygen sensors in thick film technology. Sensors Actuators B Chem 101(3):295–301. doi:10.1016/j.snb.2004.03.008

    Article  Google Scholar 

  15. Kohler H, Göpel W (1991) Mixed valent tungsten oxides: new electrode materials for the potentiometric detection of dissolved oxygen at temperatures below 35 °C. Sensors Actuators B Chem 4(3–4):345–354. doi:10.1016/0925-4005(91)80134-6

    Article  CAS  Google Scholar 

  16. Mao L, Jin J, L-n S, Yamamoto K, Jin L (1999) Electrochemical Microsensor for In vivo measurements of oxygen based on nafion and methylviologen modified carbon fiber microelectrode. Electroanalysis 11(7):499–504. doi:10.1002/(sici)1521-4109(199906)11:7<499::aid-elan499>3.0.co;2-8

    Article  CAS  Google Scholar 

  17. Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102(19):6027–6036. doi:10.1021/ja00539a009

    Article  CAS  Google Scholar 

  18. Ju H, Shen C (2001) Electrocatalytic reduction and determination of dissolved oxygen at a poly(nile blue) modified electrode. Electroanalysis 13(8–9):789–793. doi:10.1002/1521-4109(200105)13:8/9<789::aid-elan789>3.0.co;2-g

    Article  CAS  Google Scholar 

  19. Trévin S, Bedioui F, Devynck J (1996) New electropolymerized nickel porphyrin films. Application to the detection of nitric oxide in aqueous solution. J Elec Chem 408(1–2):261–265. doi:10.1016/0022-0728(96)04540-8

    Google Scholar 

  20. Ribeiro ES, Gushikem Y, Biazzotto JC, Serra OA (2002) Electrochemical properties and dissolved oxygen reduction study on an iron(III)-tetra(o-ureaphenyl)porphyrinosilica matrix surface. J Porphyrins Phthalocyanines 06(08):527–532. doi:10.1142/S1088424602000658

    Article  CAS  Google Scholar 

  21. Ciuffi KJ, Sacco HC, Biazzotto JC, Vidoto EA, Nascimento OR, Leite CAP, Serra OA, Iamamoto Y (2000) Synthesis of fluorinated metalloporphyrinosilica imprinted with templates through sol–gel process. J Non-Cryst Solids 273(1–3):100–108. doi:10.1016/S0022-3093(00)00149-6

    Article  CAS  Google Scholar 

  22. Luz RCS, Damos FS, Tanaka AA, Kubota LT (2006) Dissolved oxygen sensor based on cobalt tetrasulphonated phthalocyanine immobilized in poly-l-lysine film onto glassy carbon electrode. Sensors Actuators B Chem 114(2):1019–1027. doi:10.1016/j.snb.2005.07.063

    Article  CAS  Google Scholar 

  23. Phougat N, Vasudevan P (1997) Electrocatalytic activity of some metal phthalocyanine compounds for oxygen reduction in phosphoric acid. J Power Sources 69(1–2):161–163. doi:10.1016/S0378-7753(97)02567-6

    Article  CAS  Google Scholar 

  24. Baranton S, Coutanceau C, Roux C, Hahn F, Léger JM (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577(2):223–234. doi:10.1016/j.jelechem.2004.11.034

    Article  CAS  Google Scholar 

  25. Oyama N, Anson FC (1980) Catalysis of electrode processes by multiply-charged metal complexes electrostatically bound to polyelectrolyte coatings on graphite electrodes, and the use of polymer-coated rotating disk electrodes in diagnosing kinetic and conduction mechanisms. Anal Chem 52(8):1192–1198. doi:10.1021/ac50058a009

    Article  CAS  Google Scholar 

  26. Ng BW, Lenigk R, Wong YL, Wu X, Teng Yu N, Renneberg R (2000) Poisoning Influence of Cyanide on the Catalytic Oxygen Reduction by Cobalt(III) Tetra(3‐methoxy‐4‐hydroxylphenyl) Porphyrin Modified Electrode. J Electrochem Soc 147(6):2350–2354. doi:10.1149/1.1393535

    Article  CAS  Google Scholar 

  27. Njue CK, Nuthakki B, Vaze A, Bobbitt JM, Rusling JF (2001) Vitamin B12-mediated electrochemical cyclopropanation of styrene. Electrochem Commun 3(12):733–736. doi:10.1016/S1388-2481(01)00255-7

    Article  CAS  Google Scholar 

  28. Lin MS, Leu HJ, Lai CH (2006) Development of Vitamin B12 based disposable sensor for dissolved oxygen. Anal Chim Acta 561(1–2):164–170. doi:10.1016/j.aca.2005.12.048

    Article  CAS  Google Scholar 

  29. Canevari TC, Arguello J, Francisco MSP, Gushikem Y (2007) Cobalt phthalocyanine prepared in situ on a sol–gel derived SiO2/SnO2 mixed oxide: Application in electrocatalytic oxidation of oxalic acid. J Electroanal Chem 609(2):61–67. doi:10.1016/j.jelechem.2007.06.006

    Article  CAS  Google Scholar 

  30. Santos LSS, Landers R, Gushikem Y (2011) Application of manganese (II) phthalocyanine synthesized in situ in the SiO2/SnO2 mixed oxide matrix for determination of dissolved oxygen by electrochemical techniques. Talanta 85(2):1213–1216. doi:10.1016/j.talanta.2011.06.003

    Article  CAS  Google Scholar 

  31. Canevari TC, Luz RCS, Gushikem Y (2008) Electrocatalytic determination of nitrite on a rigid disk electrode having cobalt phthalocyanine prepared in situ. Electroanalysis 20(7):765–770. doi:10.1002/elan.200704082

    Article  CAS  Google Scholar 

  32. Arvand M, Sohrabnezhad S, Mousavi MF, Shamsipur M, Zanjanchi MA (2003) Electrochemical study of methylene blue incorporated into mordenite type zeolite and its application for amperometric determination of ascorbic acid in real samples. Anal Chim Acta 491(2):193–201. doi:10.1016/S0003-2670(03)00790-6

    Article  CAS  Google Scholar 

  33. Khoo SB, Chen F (2002) Studies of sol − gel ceramic film incorporating methylene blue on glassy carbon: an electrocatalytic system for the simultaneous determination of ascorbic and uric acids. Anal Chem 74(22):5734–5741. doi:10.1021/ac0255882

    Article  CAS  Google Scholar 

  34. Khomenko V, Frackowiak E, Béguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50(12):2499–2506. doi:10.1016/j.electacta.2004.10.078

    Article  CAS  Google Scholar 

  35. Xiao X, Zhou B, Tan L, Tang H, Zhang Y, Xie Q, Yao S (2011) Poly(methylene blue) doped silica nanocomposites with crosslinked cage structure: Electropolymerization, characterization and catalytic activity for reduction of dissolved oxygen. Electrochim Acta 56(27):10055–10063. doi:10.1016/j.electacta.2011.08.095

    Article  CAS  Google Scholar 

  36. Zuo G, Yuan H, Yang J, Zuo R, Lu X (2007) Study of orientation mode of cobalt-porphyrin on the surface of gold electrode by electrocatalytic dioxygen reduction. J Mol Catal A Chem 269(1–2):46–52. doi:10.1016/j.molcata.2006.11.041

    Article  CAS  Google Scholar 

  37. Demetgül C, Deletıoğlu D, Karaca F, Yalçinkaya S, Tımur M, Serın S (2010) Synthesis and characterization of a Schiff base derived from 2-aminobenzylamine and its Cu(II) complex: electropolymerization of the complex on a platinum electrode. J Coord Chem 63(12):2181–2191. doi:10.1080/00958972.2010.496852

    Article  Google Scholar 

  38. Dadamos TRL, Teixeira MFS (2009) Electrochemical sensor for sulfite determination based on a nanostructured copper-salen film modified electrode. Electrochim Acta 54(19):4552–4558. doi:10.1016/j.electacta.2009.03.045

    Article  CAS  Google Scholar 

  39. Martin CS, Dadamos TRL, Teixeira MFS (2012) Development of an electrochemical sensor for determination of dissolved oxygen by nickel–salen polymeric film modified electrode. Sensors Actuators B Chem 175:111–117. doi:10.1016/j.snb.2011.12.098

    Article  CAS  Google Scholar 

  40. Šljukić B, Banks CE, Compton RG (2005) An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. JICS 2(1):1–25. doi:10.1007/bf03245775

    Article  Google Scholar 

  41. Dadamos TR, Martin CS, Teixeira MFS (2011) Development of nanostructured electrochemical sensor based on polymer film nickel-salen for determination of dissolved oxygen. Procedia Eng 25:1057–1060. doi:10.1016/j.proeng.2011.12.260

    Article  CAS  Google Scholar 

  42. Zon A, Palys M, Stojek Z, Sulowska H, Ossowski T (2003) Supramolecular derivatives of 9,10-anthraquinone. Electrochemistry at regular- and low ionic strength and complexing properties. Electroanalysis 15(5–6):579–585. doi:10.1002/elan.200390072

    Article  CAS  Google Scholar 

  43. Manisankar P, Gomathi A (2005) Electrocatalytic reduction of dioxygen at the surface of carbon paste electrodes modified with 9,10-anthraquinone derivatives and dyes. Electroanalysis 17(12):1051–1057. doi:10.1002/elan.200403213

    Article  CAS  Google Scholar 

  44. Tiwari I, Singh M, Gupta M, Aggarwal SK (2012) Electroanalytical properties and application of anthraquinone derivative-functionalized multiwalled carbon nanotubes nanowires modified glassy carbon electrode in the determination of dissolved oxygen. Mater Res Bull 47(7):1697–1703. doi:10.1016/j.materresbull.2012.03.031

    Article  CAS  Google Scholar 

  45. McLaughlin GW, Braden K, Franc B, Kovacs GTA (2002) Microfabricated solid-state dissolved oxygen sensor. Sensors Actuators B Chem 83(1–3):138–148. doi:10.1016/S0925-4005(02)00021-7

    Article  CAS  Google Scholar 

  46. Maruyama J, Inaba M, Ogumi Z (1998) Rotating ring-disk electrode study on the cathodic oxygen reduction at Nafion(R)-coated gold electrodes. J Electroanal Chem 458(1):175–182

    Article  CAS  Google Scholar 

  47. Wightman RM (2006) Probing cellular chemistry in biological systems with microelectrodes. Science 311(5767):1570–1574. doi:10.1126/science.1120027

    Article  CAS  Google Scholar 

  48. Lee J-H, Seo Y, Lim T-S, Bishop PL, Papautsky I (2007) MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ Sci Technol 41(22):7857–7863. doi:10.1021/es070969o

    Article  CAS  Google Scholar 

  49. Linsenmeier RA, Yancey CM (1987) Improved fabrication of double-barreled recessed cathode O2 microelectrodes. J Appl Physiol 63(6):2554–2557

    CAS  Google Scholar 

  50. McRipley MA, Linsenmeier RA (1996) Fabrication of a mediated glucose oxidase recessed microelectrode for the amperometric determination of glucose. J Electroanal Chem 414(2):235–246. doi:10.1016/0022-0728(96)04692-X

    Google Scholar 

  51. Lee J-H, Lim T-S, Seo Y, Bishop PL, Papautsky I (2007) Needle-type dissolved oxygen microelectrode array sensors for in situ measurements. Sensors Actuators B Chem 128(1):179–185. doi:10.1016/j.snb.2007.06.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz L. Dickert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Latif, U., Dickert, F.L. (2015). Dissolved Oxygen. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1301-5_3

Download citation

Publish with us

Policies and ethics