Skip to main content

Ultra-Performance Liquid Chromatography-Mass Spectrometry Targeted Profiling of Bile Acids: Application to Serum, Liver Tissue, and Cultured Cells of Different Species

  • Protocol
  • First Online:
Mass Spectrometry in Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1198))

Abstract

Currently, there is increasing interest in developing accurate methods for the quantitative analysis of bile acids (BAs) in biological samples. We have developed a sensitive, fast, and reproducible UPLC-MRM-MS method for BA profiling in serum, liver tissue, or cultured cells of different species (human, rat, and mouse). This method, validated according to FDA guidelines, allows the quantification of 12 non-conjugated, 8 glycine-conjugated, and 11 taurine-conjugated BAs, using 5 additional deuterated BAs as internal standards in a single analytical run. The main features of this analytical approach are its high sensitivity, low sample requirements, versatility, and comprehensive capacity to profile a considerable number of BAs in samples of different species, which make it a valuable tool with potential applications in many research areas focusing on BAs, particularly in toxicological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Botham KM, Boyd GS (1983) The metabolism of chenodeoxycholic acid to beta-muricholic acid in rat liver. Eur J Biochem 134:191–196

    Article  PubMed  CAS  Google Scholar 

  2. Eyssen H, De Pauw G, Stragier J, Verhulst A (1983) Cooperative formation of omega-muricholic acid by intestinal microorganisms. Appl Environ Microbiol 45:141–147

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65: 2461–2483

    Article  PubMed  CAS  Google Scholar 

  4. Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P (2009) Bile acids as regulatory molecules. J Lipid Res 50:1509–1520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Khan AA, Chow EC, Porte RJ, Pang KS, Groothuis GM (2010) The role of lithocholic acid in the regulation of bile acid detoxication, synthesis, and transport proteins in rat and human intestine and liver slices. Toxicol In Vitro 25:80–90

    Article  PubMed  Google Scholar 

  7. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2011) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 54: 1263–1272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Reschly EJ, Krasowski MD (2006) Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr Drug Metab 7: 349–365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Trottier J, Bialek A, Caron P, Straka RJ, Milkiewicz P, Barbier O (2011) Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. PLoS One 6:e22094

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Want EJ, Coen M, Masson P, Keun HC, Pearce JT, Reily MD, Robertson DG et al (2010) Ultra performance liquid chromatography-mass spectrometry profiling of bile acid metabolites in biofluids: application to experimental toxicology studies. Anal Chem 82:5282–5289

    Article  PubMed  CAS  Google Scholar 

  11. Yang L, Xiong A, He Y, Wang Z, Wang C, Li W, Hu Z (2008) Bile acids metabonomic study on the CCl4- and alpha-naphthylisothiocyanate-induced animal models: quantitative analysis of 22 bile acids by ultraperformance liquid chromatography-mass spectrometry. Chem Res Toxicol 21:2280–2288

    Article  PubMed  CAS  Google Scholar 

  12. Trottier J, Bialek A, Caron P, Straka RJ, Heathcote J, Milkiewicz P, Barbier O (2012) Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study. Dig Liver Dis 44:303–310

    Article  PubMed  CAS  Google Scholar 

  13. Reddy BS, Watanabe K, Weisburger JH, Wynder EL (1977) Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res 37: 3238–3242

    PubMed  CAS  Google Scholar 

  14. Garcia-Canaveras JC, Donato MT, Castell JV, Lahoz A (2011) A comprehensive untargeted metabonomic analysis of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals important metabolic alterations. J Proteome Res 10: 4825–4834

    Article  PubMed  CAS  Google Scholar 

  15. Legido-Quigley C, McDermott L, Vilca-Melendez H, Murphy GM, Heaton N, Lindon JC, Nicholson JK et al (2010) Bile UPLC-MS fingerprinting and bile acid fluxes during human liver transplantation. Electrophoresis 32:2063–2070

    Article  Google Scholar 

  16. Quintas G, Portillo N, García-Cañaveras JC, Castell JV, Ferrer A, Lahoz A (2012) Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool. Metabolomics 8: 86–98

    Article  CAS  Google Scholar 

  17. Griffiths WJ, Sjovall J (2010) Bile acids: analysis in biological fluids and tissues. J Lipid Res 51:23–41

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bobeldijk I, Hekman M, de Vries van der Weij J, Coulier L, Ramaker R, Kleemann R, Kooistra T et al (2008) Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: compound class targeting in a metabolomics workflow. J Chromatogr B Analyt Technol Biomed Life Sci 871:306–313

    Article  PubMed  CAS  Google Scholar 

  19. Steiner C, von Eckardstein A, Rentsch KM (2010) Quantification of the 15 major human bile acids and their precursor 7alpha-hydroxy-4-cholesten-3-one in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:2870–2880

    Article  PubMed  CAS  Google Scholar 

  20. Huang J, Bathena SP, Csanaky IL, Alnouti Y (2011) Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC-MS/MS. J Pharm Biomed Anal 55:1111–1119

    Article  PubMed  CAS  Google Scholar 

  21. Alnouti Y, Csanaky IL, Klaassen CD (2008) Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 873:209–217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Ando M, Kaneko T, Watanabe R, Kikuchi S, Goto T, Iida T, Hishinuma T et al (2006) High sensitive analysis of rat serum bile acids by liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 40:1179–1186

    Article  PubMed  CAS  Google Scholar 

  23. Honda A, Yamashita K, Numazawa M, Ikegami T, Doy M, Matsuzaki Y, Miyazaki H (2007) Highly sensitive quantification of 7alpha-hydroxy-4-cholesten-3-one in human serum by LC-ESI-MS/MS. J Lipid Res 48:458–464

    Article  PubMed  CAS  Google Scholar 

  24. Garcia-Canaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Leon Z, Garcia-Canaveras JC, Donato MT, Lahoz A (2013) Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis 34(19):2762–2775

    PubMed  CAS  Google Scholar 

  26. Food and Drug Administration (2001) Guidance for industry: bioanalytical method validation. US Department of Health and Human Services, FDA, Bethesda, MD

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Instituto de Salud Carlos III of the Spanish Ministry of Science and Innovation (PI10/00923 and PI11/02942). A.L. is grateful for a Miguel Server contract (CP08/00125) from the Spanish Ministry of Science and Innovation/Instituto de Salud Carlos III. J.C.G.C. is grateful for a predoctoral contract from the Vali + d program of the Conselleria d’Educació (Regional Valencian Ministry of Education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Lahoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

García-Cañaveras, J.C., Donato, M.T., Lahoz, A. (2014). Ultra-Performance Liquid Chromatography-Mass Spectrometry Targeted Profiling of Bile Acids: Application to Serum, Liver Tissue, and Cultured Cells of Different Species. In: Raftery, D. (eds) Mass Spectrometry in Metabolomics. Methods in Molecular Biology, vol 1198. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1258-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1258-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1257-5

  • Online ISBN: 978-1-4939-1258-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics