Skip to main content

Dynamic Clamp as a Tool to Study the Functional Effects of Individual Membrane Currents

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

Today, the patch-clamp technique is the main technique in electrophysiology to record action potentials or membrane current from isolated cells, using a patch pipette to gain electrical access to the cell. The common recording modes of the patch-clamp technique are current clamp and voltage clamp. In the current clamp mode, the current injected through the patch pipette is under control while the free-running membrane potential of the cell is recorded. Current clamp allows for measurements of action potentials that may either occur spontaneously or in response to an injected stimulus current. In voltage clamp mode, the membrane potential is held at a set level through a feedback circuit, which allows for the recording of the net membrane current at a given membrane potential.

A less common configuration of the patch-clamp technique is the dynamic clamp. In this configuration, a specific non-predetermined membrane current can be added to or removed from the cell while it is in free-running current clamp mode. This current may be computed in real time, based on the recorded action potential of the cell, and injected into the cell. Instead of being computed, this current may also be recorded from a heterologous expression system such as a HEK-293 cell that is voltage-clamped by the free-running action potential of the cell (“dynamic action potential clamp”). Thus, one may directly test the effects of an additional or mutated membrane current, a synaptic current or a gap junctional current on the action potential of a patch-clamped cell. In the present chapter, we describe the dynamic clamp on the basis of its application in cardiac cellular electrophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharp AA, Abbott LF, Marder E (1992) Artificial electrical synapses in oscillatory networks. J Neurophysiol 67:1691–1694

    CAS  PubMed  Google Scholar 

  2. Sharp AA, O’Neil MB, Abbott LF et al (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69: 992–995

    CAS  PubMed  Google Scholar 

  3. Sharp AA, O’Neil MB, Abbott LF et al (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16: 389–394

    Article  CAS  PubMed  Google Scholar 

  4. Robinson HPC, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Meth 49:157–165

    Article  CAS  Google Scholar 

  5. Hutcheon B, Miura RM, Puil E (1996) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76: 698–714

    CAS  PubMed  Google Scholar 

  6. Wilders R (2006) Dynamic clamp: a powerful tool in cardiac electrophysiology. J Physiol 576:349–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Scott S (1979) Stimulation simulations of young yet cultured beating hearts. PhD thesis, State University of New York at Buffalo, New York

    Google Scholar 

  8. Tan RC, Joyner RW (1990) Electrotonic influences on action potentials from isolated ventricular cells. Circ Res 67:1071–1081

    Article  CAS  PubMed  Google Scholar 

  9. Joyner RW, Sugiura H, Tan RC (1991) Unidirectional block between isolated rabbit ventricular cells coupled by a variable resistance. Biophys J 60:1038–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Madhvani RV, Xie Y, Pantazis A et al (2011) Shaping a new Ca2+ conductance to suppress early afterdepolarizations in cardiac myocytes. J Physiol 589:6081–6092

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Workman AJ, Marshall GE, Rankin AC et al (2012) Transient outward K+ current reduction prolongs action potentials and promotes afterdepolarisations: a dynamic-clamp study in human and rabbit cardiac atrial myocytes. J Physiol 590:4289–4305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wilders R, Verheijck EE, Kumar R et al (1996) Model clamp and its application to synchronization of rabbit sinoatrial node cells. Am J Physiol 271:H2168–H2182

    CAS  PubMed  Google Scholar 

  13. Butera RJ Jr, Wilson CG, Delnegro CA et al (2001) A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells. IEEE Trans Biomed Eng 48:1460–1470

    Article  PubMed  Google Scholar 

  14. Raikov I, Preyer A, Butera RJ (2004) MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments. J Neurosci Methods 30:109–123

    Article  Google Scholar 

  15. Berecki G, Zegers JG, Verkerk AO et al (2005) HERG channel (dys)function revealed by dynamic action potential clamp technique. Biophys J 88:566–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Berecki G, Zegers JG, Bhuiyan ZA et al (2006) Long-QT syndrome-related sodium channel mutations probed by the dynamic action potential clamp technique. J Physiol 570: 237–250

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Verheijck EE, Wilders R, Joyner RW et al (1998) Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells. J Gen Physiol 111:95–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nguyen TP, Xie Y, Garfinkel A et al (2012) Arrhythmogenic consequences of myofibroblast-myocyte coupling. Cardiovasc Res 93:242–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Johns DC, Nuss HB, Marbán E (1997) Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4.2 constructs. J Biol Chem 272:31598–31603

    Article  CAS  PubMed  Google Scholar 

  20. Barabanov M, Yodaiken V (1997) Introducing real-time Linux. Linux J 34:19–23

    Google Scholar 

  21. Kemenes I, Marra V, Crossley M et al (2011) Dynamic clamp with StdpC software. Nat Protoc 6:405–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lin RJ, Bettencourt J, White JA et al (2010) Real-Time eXperiment Interface for biological control applications. Conf Proc IEEE Eng Med Biol Soc 2010:4160–4163

    PubMed Central  PubMed  Google Scholar 

  23. Tytgat J (1994) How to isolate cardiac myocytes. Cardiovasc Res 28:280–283

    Article  CAS  PubMed  Google Scholar 

  24. Barry PH, Lynch JW (1991) Liquid junction potentials and small cell effects in patch clamp analysis. J Membr Biol 121:101–117

    Article  CAS  PubMed  Google Scholar 

  25. Verkerk AO, Veldkamp MW, de Jonge N et al (2000) Injury current modulates afterdepolarizations in single human ventricular cells. Cardiovasc Res 47:124–132

    Article  CAS  PubMed  Google Scholar 

  26. Bettencourt JC, Lillis KP, Stupin LR et al (2008) Effects of imperfect dynamic clamp: computational and experimental results. J Neurosci Methods 169:282–289

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kullmann PHM, Wheeler DW, Beacom J et al (2004) Implementation of a fast 16-bit dynamic clamp using LabVIEW-RT. J Neurophysiol 91:542–554

    Article  PubMed  Google Scholar 

  28. Clausen C, Valiunas V, Brink PR et al (2013) MATLAB implementation of a dynamic clamp with bandwidth of >125 kHz capable of generating I Na at 37 °C. Pflügers Arch 465: 497–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wilders R, Verheijck EE, Joyner RW et al (1999) Effects of ischemia on discontinuous action potential conduction in hybrid pairs of ventricular cells. Circulation 99:1623–1629

    Article  CAS  PubMed  Google Scholar 

  30. Joyner RW, Wang Y-G, Wilders R et al (2000) A spontaneously active focus drives a model atrial sheet more easily than a model ventricular sheet. Am J Physiol Heart Circ Physiol 279:H752–H763

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Berend de Jonge and Mr. Jan G. Zegers for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Wilders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Berecki, G., Verkerk, A.O., van Ginneken, A.C.G., Wilders, R. (2014). Dynamic Clamp as a Tool to Study the Functional Effects of Individual Membrane Currents. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics