Skip to main content

Ionizing Radiation

  • Chapter
  • First Online:
Male Infertility

Abstract

The past 50 years have seen a rapid decrease in seminal quality, demonstrating the relevance of an ever-changing world and subsequent variable environmental influences on reproduction. Experts attribute the phenomenon of unexplained male infertility (UMI) to developments in industry, evolving lifestyles and the ensuing effects of environmental changes to the body. The reproductive system is bombarded with toxins, environmental exposures and unhealthy lifestyle choices from its initial development (gestational and pre-pubertal) right through to maturity (adulthood). Such external factors can induce morphologic-, genetic- or oxidative impairment of reproductive tissues and functions. One such factor is ionizing radiation (IR). The effects of IR on reproduction are of growing concern as the number of people exposed to radiation via medical procedures or industrial occupations increase.

This chapter aims to address the issue of IR and its effect on male reproduction, briefly discussing some possible sources of IR as well as some biological effects succeeding IR exposure. Though the studies evaluating the effects of IR on reproduction are few and not without their constraints, there is certainly enough evidence to validate the inclusion of IR to the arsenal of environmental factors that might be partially, if not definitively, responsible for the development of UMI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamada A, Esteves S, Agarwal A. Unexplained male infertility—looking beyond routine semen analysis. Euro Urol Rev. 2012;7(1):90–6.

    Google Scholar 

  2. World Health Organization. WHO manual for the standardized investigation and diagnosis of the infertile couple. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  3. Wilson JW, Goldhagen P, Rafnsson V, Clem JM, De Angelis G, Friedberg W. Overview of atmospheric ionizing radiation (AIR) research: SST-present. Adv Space Res. 2003;32(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  4. Lipshultz L, Sigman M. Office evaluation of the subfertile male. In: Howards S, Lipshultz L, Niederberger C, editors. Infertility in the male. Cambridge: Cambridge University Press; 2009. p. 153–76.

    Chapter  Google Scholar 

  5. Bullock J, Boyle J, Wang MB, Ajello RR. Physiology. Pennsylvania: Harwal Publishing Company; 1984.

    Google Scholar 

  6. Lancranjan I, Maicanescu M, Rafaila E, Klepsch I, Popescu HI. Gonadic function in workmen with long-term exposure to microwaves. Health Phys. 1975;29(3):381–3.

    Article  CAS  PubMed  Google Scholar 

  7. Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59(3):665–78.

    Article  CAS  PubMed  Google Scholar 

  8. Doyle P, Roman E, Maconochie N, Davies G, Smith PG, Beral V. Primary infertility in nuclear industry employees: report from the nuclear industry family study. Occup Environ Med. 2001;58(8):4.

    Article  Google Scholar 

  9. International Atomic Energy Agency (IAEA). Radiation, people and the environment. Vienna: IAEA; 2004.

    Google Scholar 

  10. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation: sources (Vol 1). Vienna: United Nations Publications; 2000.

    Google Scholar 

  11. Clifton DK, Bremner WJ. The effect of testicular x-irradiation on spermatogenesis in man. A comparison with the mouse. J Androl. 1983;4(6):387–92.

    CAS  PubMed  Google Scholar 

  12. Sharma OP, Oswanski MF, Sidhu R, Krugh K, Culler AS, Spangler M, et al. Analysis of radiation exposure in trauma patients at a level I trauma center. J Emerg Med. 2011;41(6):640–8.

    Article  PubMed  Google Scholar 

  13. Fleurian G, Perrin J, Ecochard R, Dantony E, Lanteaume A, Achard V, Sari-Minodier I. Occupational exposures obtained by questionnaire in clinical practice and their association with semen quality. J Androl. 2009;30(5):566–79.

    Article  PubMed  Google Scholar 

  14. Naysmith TE, Blake DA, Harvey VJ, Johnson NP. Do men undergoing sterilizing cancer treatments have a fertile future? Hum Reprod. 1998;13(11):3250–5.

    Article  CAS  PubMed  Google Scholar 

  15. Dias FL, Antunes LM, Rezende PA, Carvalho FE, Silva C, Matheus JM, Balarin MA. Cytogenetic analysis in lymphocytes from workers occupationally exposed to low levels of ionizing radiation. Environ Toxicol Pharmacol. 2007;23(2):228–33.

    Article  CAS  PubMed  Google Scholar 

  16. Sahin A, Tatar A, Oztas S, Seven B, Varoglu E, Yesilyurt A, et al. Evaluation of the genotoxic effects of chronic low-dose ionizing radiation exposure on nuclear medicine workers. Nucl Med Biol. 2009;36(5):575–8.

    Article  CAS  PubMed  Google Scholar 

  17. Cardis E, Gilbert ES, Carpenter L, Howe G, Kato I, Armstrong BK, et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res. 1995;142(2):117–32.

    Article  CAS  PubMed  Google Scholar 

  18. De Angelis G, Caldora M, Santaquilani M, Scipione R, Verdecchia A. Radiation exposure of civilian airline crew members and associated biological effects due to the atmospheric ionizing radiation environment. Phys Med. 2001;17:258–60.

    PubMed  Google Scholar 

  19. IuIu C, Cheburakova OP. Disorders of spermatogenesis in people working at the clean-up of the Chernobyl nuclear power plant accident. Radiats Biol Radioecol. 1993;33(6):1.

    Google Scholar 

  20. Moller AP, Mousseau TA. Biological consequences of Chernobyl: 20 years on. Trends Ecol Evol. 2006;21(4):200–7.

    Article  PubMed  Google Scholar 

  21. Belyakov OV, Steinhäusler F, Trott KR. Chernobyl liquidators. The people and the doses. Tenth International Congress of the International Radiation Protection Association: Hiroshima; 2000.

    Google Scholar 

  22. Fairlie I. Chernobyl: consequences of the catastrophe for people and the environment. Radiat Protect Dosim. 2010;141(1):97–101.

    Article  CAS  Google Scholar 

  23. Moller AP, Mousseau TA, Lynn C, Ostermiller S, Rudolfsen G. Impaired swimming behaviour and morphology of sperm from barn swallows Hirundo rustica in Chernobyl. Mutat Res. 2008;650(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  24. Fischbein A, Zabludovsky N, Eltes F, Grischenko V, Bartoov B. Ultramorphological sperm characteristics in the risk assessment of health effects after radiation exposure among salvage workers in Chernobyl. Environ Health Perspect. 1997;105(6):1445–9.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ferguson CD, Kazi T, Perera J. Commercial radioactive sources: surveying the security risks. Monterey: Monterey Institute of International Studies, Center for Nonproliferation Studies; 2003.

    Google Scholar 

  26. De la Calle JFV, Rachou E, le Martelot MT, Ducot B, Multigner L, Thonneau PF. Male infertility risk factors in a French military population. Hum Reprod. 2001;16(3):481–6.

    Article  Google Scholar 

  27. Schrader SM, Langford RE, Turner TW, Breitenstein MJ, Clark JC, Jenkins BL, et al. Reproductive function in relation to duty assignments among military personnel. Reprod Toxicol. 1998;12(4):3.

    Article  Google Scholar 

  28. Weyandt TB, Schrader SM, Turner TW, Simon SD. Semen analysis of military personnel associated with military duty assignments. Reprod Toxicol. 1996;10(6):521–8.

    Article  CAS  PubMed  Google Scholar 

  29. Saleh RA, Agarwal A, Kandirali E, Sharma RK, Thomas AJ, Nada EA, et al. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril. 2002;78(6):1215–24.

    Article  PubMed  Google Scholar 

  30. Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.

    Article  CAS  PubMed  Google Scholar 

  31. Maneesh M, Jayalekshmi H. Role of reactive oxygen species and antioxidants on pathophysiology of male reproduction. Indian J Clin Biochem. 2006;21(2):80–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Aitken RJ, Buckingham D, Harkiss D. Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil. 1993;97(2):441–50.

    Article  CAS  PubMed  Google Scholar 

  33. Cocuzza M, Sikka SC, Athayde KS, Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol. 2007;33(5):603–21.

    Article  PubMed  Google Scholar 

  34. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129(4):357–67.

    CAS  PubMed  Google Scholar 

  35. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 1993;53(8):1945–51.

    CAS  PubMed  Google Scholar 

  37. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48(6):835–50.

    Article  CAS  PubMed  Google Scholar 

  38. Martin RH, Hildebrand K, Yamamoto J, Rademaker A. An increased frequency of human sperm chromosomal abnormalities after radiotherapy. Mutat Res. 1986;174(3):6.

    Google Scholar 

  39. Jennet S. Human physiology. 1st ed. London: Churchill Livingstone; 1989.

    Google Scholar 

  40. Hyer S, Vini L, O’Connell M, Pratt B, Harmer C. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol. 2002;56(6):755–8.

    Article  CAS  Google Scholar 

  41. Moghbeli-Nejad S, Mozdarani H, Behmanesh M, Rezaiean Z, Fallahi P. Genome instability in AZFc region on Y chromosome in leukocytes of fertile and infertile individuals following exposure to gamma radiation. J Assist Reprod Genet. 2012;29(1):53–61.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Xu G, Intano GW, McCarrey JR, Walter RB, McMahan CA, Walter CA. Recovery of a low mutant frequency after ionizing radiation-induced mutagenesis during spermatogenesis. Mutat Res. 2008;654(2):150–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Nikjoo H, O’Neill P, Wilson WE, Goodhead DT. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat Res. 2001;156:577–83.

    Article  CAS  PubMed  Google Scholar 

  44. Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.

    Article  CAS  PubMed  Google Scholar 

  45. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122(4):497–506.

    Article  CAS  PubMed  Google Scholar 

  46. Duru NK, Morshedi M, Schuffner A, Oehninger S. Semen treatment with progesterone and/or acetyl-L-carnitine does not improve sperm motility or membrane damage after cryopreservation-thawing. Fertil Steril. 2000;74(4):715–20.

    Article  CAS  PubMed  Google Scholar 

  47. Ramos L, Wetzels AM. Low rates of DNA fragmentation in selected motile human spermatozoa assessed by the TUNEL assay. Hum Reprod. 2001;16(8):1703–7.

    Article  CAS  PubMed  Google Scholar 

  48. Kullisaar T, Turk S, Punab M, Korrovits P, Kisand K, Rehema A, Zilmer M, Mandar R. Oxidative stress in leucocytospermic prostatitis patients: preliminary results. Andrologia. 2007;40:11.

    Google Scholar 

  49. Shamsi MB, Venkatesh S, Tanwar M, Talwar P, Sharma RK, Dhawan A, et al. DNA integrity and semen quality in men with low seminal antioxidant levels. Mutat Res. 2009;665(1–2):29–36.

    Article  CAS  PubMed  Google Scholar 

  50. Philpott A, Leno GH. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell. 1992;69(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  51. Nakayama K, Milbourne A, Schover LR, Champlin RE, Ueno NT. Gonadal failure after treatment of hematologic malignancies: from recognition to management for health-care providers. Nat Clin Pract Oncol. 2008;2:78–89.

    Article  Google Scholar 

  52. Aydemir B, Onaran I, Kiziler AR, Alici B, Akyolcu MC. The influence of oxidative damage on viscosity of seminal fluid in infertile men. J Androl. 2008;29(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  53. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.

    CAS  PubMed  Google Scholar 

  54. de Lamirande E, Gagnon C. Human sperm hyperactivation in whole semen and its association with low superoxide scavenging capacity in seminal plasma. Fertil Steril. 1993;59(6):1291–5.

    PubMed  Google Scholar 

  55. Agarwal A, Ranganathan P, Kattal N, Pasqualotto F, Hallak J, Khayal S, et al. Fertility after cancer: a prospective review of assisted reproductive outcome with banked semen specimens. Fertil Steril. 2004;81(2):342–8.

    Article  PubMed  Google Scholar 

  56. Ogilvy-Stuart AL, Shalet SM. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101 Suppl 2:109–16.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Yau I, Vuong T, Garant A, Ducruet T, Doran P, Faria S, et al. Risk of hypogonadism from scatter radiation during pelvic radiation in male patients with rectal cancer. Int J Radiat Oncol Biol Phys. 2009;74(5):1481–6.

    Article  PubMed  Google Scholar 

  58. Dohle GR. Male infertility in cancer patients: review of the literature. Int J Urol. 2010;17(4):327–31.

    Article  PubMed  Google Scholar 

  59. Lass A, Akagbosu F, Brinsden P. Sperm banking and assisted reproduction treatment for couples following cancer treatment of the male partner. Hum Reprod Update. 2001;7(4):370–7.

    Article  CAS  PubMed  Google Scholar 

  60. Tempest HG, Ko E, Chan P, Robaire B, Rademaker A, Martin RH. Sperm aneuploidy frequencies analysed before and after chemotherapy in testicular cancer and Hodgkin’s lymphoma patients. Hum Reprod. 2008;23(2):251–8.

    Article  CAS  PubMed  Google Scholar 

  61. Barber HR. The effect of cancer and its therapy upon fertility. Int J Fertil Steril. 1981;26(4):250–9.

    CAS  Google Scholar 

  62. Shin D, Lo KC, Lipshultz LI. Treatment options for the infertile male with cancer. J Natl Cancer Inst Monogr. 2005;34:48–50.

    Article  PubMed  Google Scholar 

  63. Feldschuh J, Brassel J, Durso N, Levine A. Successful sperm storage for 28 years. Fertil Steril. 2005;84(4):1017.

    Article  PubMed  Google Scholar 

  64. Ohta H, Wakayama T. Generation of normal progeny by intracytoplasmic sperm injection following grafting of testicular tissue from cloned mice that died postnatally. Biol Reprod. 2005;73(3):390–5.

    Article  CAS  PubMed  Google Scholar 

  65. de Rooij DG, van de Kant HJ, Dol R, Wagemaker G, van Buul PP, van Duijn-Goedhart A, et al. Long-term effects of irradiation before adulthood on reproductive function in the male rhesus monkey. Biol Reprod. 2002;66(2):486–94.

    Article  PubMed  Google Scholar 

  66. Saalu LC. The incriminating role of reactive oxygen species in idiopathic male infertility: an evidence based evaluation. Pak J Biol Sci. 2010;13(9):413–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan S. du Plessis BSc (Hons), MSc, MBA, PhD (Stell) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maartens, P.J., Flint, M., du Plessis, S.S. (2014). Ionizing Radiation. In: du Plessis, S., Agarwal, A., Sabanegh, Jr., E. (eds) Male Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1040-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1040-3_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1039-7

  • Online ISBN: 978-1-4939-1040-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics