Skip to main content

Eosinophils Interaction with Mast Cells: The Allergic Effector Unit

  • Protocol
  • First Online:
Eosinophils

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1178))

Abstract

Mast cells (MC) and eosinophils are the key effector cells of allergy (Minai-Fleminger and Levi-Schaffer, Inflamm Res 58:631–638, 2009). In general, allergic reactions have two phases, namely, an early phase and a late phase. MC and eosinophils abundantly coexist in the inflamed tissue in the late and chronic phases and cross talk in a bidirectional manner. This bidirectional interaction between MC and eosinophils is mediated by both physical cell–cell contacts through cell surface receptors such as CD48 , 2B4 and soluble mediators through various specific granular mediators, arachidonic acid metabolites, cytokines , and chemokines, collectively termed the “Allergic Effector Unit” (AEU) (Elishmereni et al., Allergy 66:376–385, 2011; Minai-Fleminger et al., Cell Tissue Res 341:405–415, 2010). These bidirectional interactions can be studied in vitro in a customized coculture system of MC and eosinophils derived from either mouse or human source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8:478–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bachelet I, Levi-Schaffer F, Mekori YA (2006) Mast cells: not only in allergy. Immunol Allergy Clin North Am 26:407–425

    Article  PubMed  Google Scholar 

  3. Bischoff SC (2007) Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7:93–104

    Article  CAS  PubMed  Google Scholar 

  4. Puxeddu I, Piliponsky AM, Bachelet I et al (2003) Mast cells in allergy and beyond. Int J Biochem Cell Biol 35:1601–1607

    Article  CAS  PubMed  Google Scholar 

  5. Theoharides TC, Kalogeromitros D (2006) The critical role of mast cells in allergy and inflammation. Ann N Y Acad Sci 1088:78–99

    Article  CAS  PubMed  Google Scholar 

  6. Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kita H (2013) Eosinophils: multifunctional and distinctive properties. Int Arch Allergy Immunol 161(Suppl 2):3–9

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fulkerson PC, Rothenberg ME (2013) Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov 12:117–129

    Article  CAS  PubMed  Google Scholar 

  9. Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253

    Article  CAS  PubMed  Google Scholar 

  10. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174

    Article  CAS  PubMed  Google Scholar 

  11. Minai-Fleminger Y, Levi-Schaffer F (2009) Mast cells and eosinophils: the two key effector cells in allergic inflammation. Inflamm Res 58:631–638

    Article  CAS  PubMed  Google Scholar 

  12. Elishmereni M, Alenius HT, Bradding P et al (2011) Physical interactions between mast cells and eosinophils: a novel mechanism enhancing eosinophil survival in vitro. Allergy 66:376–385

    Article  CAS  PubMed  Google Scholar 

  13. Minai-Fleminger Y, Elishmereni M, Vita F et al (2010) Ultrastructural evidence for human mast cell-eosinophil interactions in vitro. Cell Tissue Res 341:405–415

    Article  PubMed  Google Scholar 

  14. Shakoory B, Fitzgerald SM, Lee SA et al (2004) The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res 24:271–281

    Article  CAS  PubMed  Google Scholar 

  15. Bachelet I, Munitz A, Mankutad D et al (2006) Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2): a novel interface in the allergic process. J Biol Chem 281:27190–27196

    Article  CAS  PubMed  Google Scholar 

  16. Munitz A, Bachelet I, Fraenkel S et al (2005) 2B4 (CD244) is expressed and functional on human eosinophils. J Immunol 174:110–118

    Article  CAS  PubMed  Google Scholar 

  17. Blank U, Rivera J (2006) Assays for regulated exocytosis of mast cell granules. Curr Protoc Cell Biol Chapter 15, Unit 15 11

    Google Scholar 

  18. Berent-Maoz B, Gur C, Vita F et al (2011) Influence of FAS on murine mast cell maturation. Ann Allergy Asthma Immunol 106:239–244

    Article  CAS  PubMed  Google Scholar 

  19. Jensen BM, Swindle EJ, Iwaki S et al (2006) Generation, isolation, and maintenance of rodent mast cells and mast cell lines. Curr Protoc Immunol Chapter 3, Unit 3 23

    Google Scholar 

  20. Dyer KD, Moser JM, Czapiga M et al (2008) Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J Immunol 181:4004–4009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Elishmereni M, Bachelet I, Nissim Ben-Efraim AH et al (2013) Interacting mast cells and eosinophils acquire an enhanced activation state in vitro. Allergy 68:171–179

    Article  CAS  PubMed  Google Scholar 

  22. Kawakami T, Galli SJ (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2:773–786

    Article  CAS  PubMed  Google Scholar 

  23. Galli SJ, Kalesnikoff J, Grimbaldeston MA et al (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786

    Article  CAS  PubMed  Google Scholar 

  24. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bloemen K, Verstraelen S, Van Den Heuvel R et al (2007) The allergic cascade: review of the most important molecules in the asthmatic lung. Immunol Lett 113:6–18

    Article  CAS  PubMed  Google Scholar 

  26. Prussin C, Metcalfe DD (2006) 5. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 117:S450–S456

    Article  CAS  PubMed  Google Scholar 

  27. Pretlow TP, Wilk AI, Davis LA et al (1988) Comparison of different methods for the purification of eosinophils from human peripheral blood. Anal Biochem 175:334–341

    Article  CAS  PubMed  Google Scholar 

  28. Hansel TT, De Vries IJ, Iff T et al (1991) An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J Immunol Methods 145:105–110

    Article  CAS  PubMed  Google Scholar 

  29. Saito H, Ebisawa M, Sakaguchi N et al (1995) Characterization of cord-blood-derived human mast cells cultured in the presence of Steel factor and interleukin-6. Int Arch Allergy Immunol 107:63–65

    Article  CAS  PubMed  Google Scholar 

  30. Yurt RW, Leid RW Jr, Austen KF (1977) Native heparin from rat peritoneal mast cells. J Biol Chem 252:518–521

    CAS  PubMed  Google Scholar 

  31. Kovarova M (2013) Isolation and characterization of mast cells in mouse models of allergic diseases. Methods Mol Biol 1032:109–119

    Article  PubMed  Google Scholar 

  32. Yamada N, Matsushima H, Tagaya Y et al (2003) Generation of a large number of connective tissue type mast cells by culture of murine fetal skin cells. J Invest Dermatol 121:1425–1432

    Article  CAS  PubMed  Google Scholar 

  33. Matsue H, Kambe N, Shimada S (2009) Murine fetal skin-derived cultured mast cells: a useful tool for discovering functions of skin mast cells. J Invest Dermatol 129:1120–1125

    Article  CAS  PubMed  Google Scholar 

  34. Konno S, Adachi M, Asano K et al (1993) Inhibitory effect of interferon-beta on mouse spleen-derived mast cells. Mediators Inflamm 2:243–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Levi-Schaffer F, Dayton ET, Austen KF et al (1987) Mouse bone marrow-derived mast cells cocultured with fibroblasts. Morphology and stimulation-induced release of histamine, leukotriene B4, leukotriene C4, and prostaglandin D2. J Immunol 139:3431–3441

    CAS  PubMed  Google Scholar 

  36. Nilsson G, Blom T, Kusche-Gullberg M et al (1994) Phenotypic characterization of the human mast-cell line HMC-1. Scand J Immunol 39:489–498

    Article  CAS  PubMed  Google Scholar 

  37. Kirshenbaum AS, Akin C, Wu Y et al (2003) Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcepsilonRI or FcgammaRI. Leuk Res 27:677–682

    Article  CAS  PubMed  Google Scholar 

  38. Rottem M, Okada T, Goff JP et al (1994) Mast cells cultured from the peripheral blood of normal donors and patients with mastocytosis originate from a CD34+/Fc epsilon RI- cell population. Blood 84:2489–2496

    CAS  PubMed  Google Scholar 

  39. Salari H, Takei F, Miller R et al (1987) Novel technique for isolation of human lung mast cells. J Immunol Methods 100:91–97

    Article  CAS  PubMed  Google Scholar 

  40. Church MK, Clough GF (1999) Human skin mast cells: in vitro and in vivo studies. Ann Allergy Asthma Immunol 83:471–475

    Article  CAS  PubMed  Google Scholar 

  41. Fox CC, Dvorak AM, Peters SP et al (1985) Isolation and characterization of human intestinal mucosal mast cells. J Immunol 135:483–491

    CAS  PubMed  Google Scholar 

  42. Sperr WR, Bankl HC, Mundigler G et al (1994) The human cardiac mast cell: localization, isolation, phenotype, and functional characterization. Blood 84:3876–3884

    CAS  PubMed  Google Scholar 

  43. Massey WA, Guo CB, Dvorak AM et al (1991) Human uterine mast cells. Isolation, purification, characterization, ultrastructure, and pharmacology. J Immunol 147:1621–1627

    CAS  PubMed  Google Scholar 

  44. Finotto S, Dolovich J, Denburg JA et al (1994) Functional heterogeneity of mast cells isolated from different microenvironments within nasal polyp tissue. Clin Exp Immunol 95:343–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Cypcar D, Sorkness R, Sedgwick J et al (1996) Rat eosinophils: isolation and characterization of superoxide production. J Leukoc Biol 60:101–105

    CAS  PubMed  Google Scholar 

  46. Penttila IA, O’Keefe DE, Jenkin CR (1982) A single-step method for the enrichment of murine peripheral blood eosinophils. J Immunol Methods 51:119–123

    Article  CAS  PubMed  Google Scholar 

  47. Dent LA, Daly CM, Mayrhofer G et al (1999) Interleukin-5 transgenic mice show enhanced resistance to primary infections with Nippostrongylus brasiliensis but not primary infections with Toxocara canis. Infect Immun 67:989–993

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Dent LA, Munro GH, Piper KP et al (1997) Eosinophilic interleukin 5 (IL-5) transgenic mice: eosinophil activity and impaired clearance of Schistosoma mansoni. Parasite Immunol 19:291–300

    Article  CAS  PubMed  Google Scholar 

  49. Mishra A, Hogan SP, Brandt EB et al (2002) IL-5 promotes eosinophil trafficking to the esophagus. J Immunol 168:2464–2469

    Article  CAS  PubMed  Google Scholar 

  50. Wong TW, Jelinek DF (2013) Purification of functional eosinophils from human bone marrow. J Immunol Methods 387:130–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kajiwara N, Sasaki T, Bradding P et al (2010) Activation of human mast cells through the platelet-activating factor receptor. J Allergy Clin Immunol 125:1137–1145 e1136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Laila Karra for her valuable comments and critical evaluation in writing this chapter. This work was supported by the Israel Science Foundation (grant 213/05), the MAARS EU 7th framework (grant no. HEALTH-F2-2011-261366), the Aimwell Charitable Trust (London, UK). F. Levi-Schaffer is affiliated with The Dr. Adolph and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics, School of Pharmacy and the Alex Grass Center for Drug Design and Synthesis of Novel Therapeutics, School of Pharmacy of The Hebrew University of Jerusalem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Levi-Schaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Gangwar, R.S., Levi-Schaffer, F. (2014). Eosinophils Interaction with Mast Cells: The Allergic Effector Unit. In: Walsh, G. (eds) Eosinophils. Methods in Molecular Biology, vol 1178. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1016-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1016-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1015-1

  • Online ISBN: 978-1-4939-1016-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics