Skip to main content

Morphological and Metabolic Assessment of Oocytes and Embryos

  • Chapter
  • First Online:
Gamete and Embryo Selection

Part of the book series: SpringerBriefs in Reproductive Biology ((BRIEFSREPROBIO))

  • 733 Accesses

Abstract

The non-invasive assessment of preimplantation embryos has been largely limited to the use of morphology and has become the primary tool of the embryologist for selecting which embryo(s) to replace. Since the early years of in vitro fertilization (IVF) it was noted that embryos cleaving faster and those of better morphological appearance were more likely to lead to a pregnancy. Indeed, Edwards and colleagues noted only a few years after the birth of Louise Brown “that cleavage rates on a certain day and overall embryo morphology were valuable in choosing which embryo to transfer”. In 1986 one of the initial large studies [N = 1,539 embryos] examining the usefulness of embryo morphology was published by Cummins et al. and reported that embryo quality scores were valuable in predicting success. Indeed Cummins et al. calculated an embryo development rating based on the ratio between the time at which embryos were observed at a particular stage after insemination and the time at which they would be expected to reach that stage of a hypothetical “ideal” growth rate with a cell cycle length of 11.9 h. Using this scoring system, “normally” growing embryos scored 100, however the scoring system was evidently never assessed prospectively. The following year a study by Puissant et al. reported the grading of embryos based on the amount of anucleate fragments expelled during early cleavage and on developmental speed. They found that embryos endowed with a high score were more often associated with pregnancy and in particular with the occurrence of multiple pregnancy. Interestingly, they already proposed that in the event of a high score: “It might be warranted to replace only two embryos when these conditions are fulfilled.” Here already, in the 1980s, the simple but important concept was introduced that identifying a better embryo will allow us to transfer fewer embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards R, Fishel S, Cohen J. Factors influencing the success of in vitro fertilization for alleviating human infertility. J In Vitro Fert Embryo Transf. 1984;1:3–23.

    Article  CAS  PubMed  Google Scholar 

  2. Cummins J, Breen T, Harrison K, Shaw J, Wilson L, Hennessey J. A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J In Vitro Fert Embryo Transf. 1986;3:284–95.

    Article  CAS  PubMed  Google Scholar 

  3. Puissant F, Van RM, Barlow P, Deweze J, Leroy F. Embryo scoring as a prognostic tool in IVF treatment. Hum Reprod. 1987;2(8):705–8.

    Google Scholar 

  4. De Neubourg D, Gerris J. Single embryo transfer—state of the art. Reprod Biomed Online. 2003;7(6):615–22.

    Article  PubMed  Google Scholar 

  5. Sakkas D. Evaluation of embryo quality. A comprehensive textbook of assisted reproductive technology. In: Gardner D, Weissman A, Howles C, Shoham Z, editors. Laboratory and clinical perspectives. London: Martin Dunitz Press; 2001. pp. 223–232.

    Google Scholar 

  6. Sakkas D, Gardner DK. Noninvasive methods to assess embryo quality. Curr Opin Obstet Gynecol. 2005;17(3):283–8.

    Article  PubMed  Google Scholar 

  7. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81(3):551–5.

    Article  CAS  PubMed  Google Scholar 

  8. Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, Walmer DK. Relationship between pre-embryo pronuclear morphology (zygote score) and standard day 2 or 3 embryo morphology with regard to assisted reproductive technique outcomes. Fertil Steril. 2005;84(4):900–9.

    Article  PubMed  Google Scholar 

  9. Montag M, Van der Ven H, Evaluation of pronuclear morphology as the only selection criterion for further embryo culture and transfer: results of a prospective multicentre study. Hum Reprod. 2001;16(11):2384–9.

    CAS  PubMed  Google Scholar 

  10. Weitzman VN, Schnee-Riesz J, Benadiva C, Nulsen J, Siano L, Maier D. Predictive value of embryo grading for embryos with known outcomes. Fertil Steril. 2010;93(2):658–62.

    Article  PubMed  Google Scholar 

  11. Ciray HN, Karagenc L, Ulug U, Bener F, Bahceci M. Early cleavage morphology affects the quality and implantation potential of day 3 embryos. Fertil Steril. 2006;85(2):358–65.

    Article  PubMed  Google Scholar 

  12. Hesters L, Prisant N, Fanchin R, Mendez Lozano DH, Feyereisen E, Frydman R, et al. Impact of early cleaved zygote morphology on embryo development and in vitro fertilization-embryo transfer outcome: a prospective study. Fertil Steril. 2008;89(6):1677–84.

    Article  PubMed  Google Scholar 

  13. Pelinck MJ, Hoek A, Simons AH, Heineman MJ, van Echten-Arends J, Arts EG. Embryo quality and impact of specific embryo characteristics on ongoing implantation in unselected embryos derived from modified natural cycle in vitro fertilization. Fertil Steril. 2010;94(2):527–34.

    Article  PubMed  Google Scholar 

  14. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–8.

    Article  CAS  PubMed  Google Scholar 

  15. Balaban B, Yakin K, Urman B. Randomized comparison of two different blastocyst grading systems. Fertil Steril. 2006;85(3):559–63.

    Article  PubMed  Google Scholar 

  16. Terriou P, Sapin C, Giorgetti C, Hans E, Spach JL, Roulier R. Embryo score is a better predictor of pregnancy than the number of transferred embryos or female age. Fertil Steril. 2001;75(3):525–31.

    Article  CAS  PubMed  Google Scholar 

  17. Fisch JD, Rodriguez H, Ross R, Overby G, Sher G. The graduated embryo score (GES) predicts blastocyst formation and pregnancy rate from cleavage-stage embryos. Hum Reprod. 2001;16(9):1970–5.

    Article  CAS  PubMed  Google Scholar 

  18. Sjoblom P, Menezes J, Cummins L, Mathiyalagan B, Costello MF. Prediction of embryo developmental potential and pregnancy based on early stage morphological characteristics. Fertil Steril. 2006;86(4):848–61.

    Article  PubMed  Google Scholar 

  19. Neuber E, Rinaudo P, Trimarchi JR, Sakkas D. Sequential assessment of individually cultured human embryos as an indicator of subsequent good quality blastocyst development. Hum Reprod. 2003;18(6):1307–12.

    Article  CAS  PubMed  Google Scholar 

  20. Jones HW. Multiple births: how are we doing? Fertil Steril. 2003;79(1):17–21.

    Article  PubMed  Google Scholar 

  21. Luke B, Brown MB, Nugent C, Gonzalez-Quintero VH, Witter FR, Newman RB. Risk factors for adverse outcomes in spontaneous versus assisted conception twin pregnancies. Fertil Steril. 2004;81(2):315–9.

    Article  PubMed  Google Scholar 

  22. Gleicher N, Barad D. Twin pregnancy, contrary to consensus, is a desirable outcome in infertility. Fertil Steril. 2009;91(6):2426–31.

    Article  PubMed  Google Scholar 

  23. Gelbaya TA, Tsoumpou I, Nardo LG. The likelihood of live birth and multiple birth after single versus double embryo transfer at the cleavage stage: a systematic review and meta-analysis. Fertil Steril. 2010;94(3):936–45.

    Article  PubMed  Google Scholar 

  24. Jungheim ES, Ryan GL, Levens ED, Cunningham AF, Macones GA, Carson KR, et al. Embryo transfer practices in the United States: a survey of clinics registered with the Society for Assisted Reproductive Technology. Fertil Steril. 2010;94(4):1432–6.

    Article  PubMed  Google Scholar 

  25. Society for Assisted Reproductive Technology (SART). 2011 data. https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?ClinicPKID=0

  26. Racowsky C, Stern JE, Gibbons WE, Behr B, Pomeroy KO, Biggers JD. National collection of embryo morphology data into society for assisted reproductive technology clinic outcomes reporting system: associations among day 3 cell number, fragmentation and blastomere asymmetry, and live birth rate. Fertil Steril. 2011;95(6):1985–9.

    Article  PubMed  Google Scholar 

  27. Gardner DK, Schoolcraft WB In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: Infertility and genetics beyond. Carnforth: Parthenon Press; 1999. p. 378.

    Google Scholar 

  28. Gardner DK, Schoolcraft WB. A randomized trial of blastocyst culture and transfer in in-vitro fertilization: reply. Hum Reprod. 1999;14(6):1663A–1663.

    Article  PubMed  Google Scholar 

  29. (29) Menezo Y, Veiga A, Benkhalifa M. Improved methods for blastocyst formation and culture. Hum Reprod 1998;13(Suppl 4):256–65.

    Article  PubMed  Google Scholar 

  30. (30) Marek D, Langley M, Gardner DK, Confer N, Doody KM, Doody KJ. Introduction of blastocyst culture and transfer for all patients in an in vitro fertilization program. Fertil Steril. 1999;72(6):1035–40.

    Article  CAS  PubMed  Google Scholar 

  31. Wilson M, Hartke K, Kiehl M, Rodgers J, Brabec C, Lyles R. Integration of blastocyst transfer for all patients. Fertil Steril. 2002;77(4):693–6.

    Article  PubMed  Google Scholar 

  32. Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2012;7:CD002118.

    PubMed  Google Scholar 

  33. Blake DA, Farquhar CM, Johnson N, Proctor M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev. 2007;17(4):CD002118.

    Google Scholar 

  34. Cobo A, de los SMJ, Castello D, Gamiz P, Campos P, Remohi J. Outcomes of vitrified early cleavage-stage and blastocyst-stage embryos in a cryopreservation program: evaluation of 3,150 warming cycles. Fertil Steril. 2012;98(5):1138–46.

    Article  PubMed  Google Scholar 

  35. Ahlstrom A, Westin C, Reismer E, Wikland M, Hardarson T. Trophectoderm morphology: an important parameter for predicting live birth after single blastocyst transfer. Hum Reprod. 2011;26(12):3289–96.

    Article  CAS  PubMed  Google Scholar 

  36. Shih W, Rushford DD, Bourne H, Garrett C, McBain JC, Healy DL, et al. Factors affecting low birthweight after assisted reproduction technology: difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum Reprod. 2008;23(7):1644–53.

    Article  CAS  PubMed  Google Scholar 

  37. Cohen J, Inge KL, Suzman M, Wiker SR, Wright G. Videocinematography of fresh and cryopreserved embryos: a retrospective analysis of embryonic morphology and implantation. Fertil Steril. 1989;51(5):820–7.

    CAS  PubMed  Google Scholar 

  38. Cohen J, Wiemer KE, Wright G. Prognostic value of morphologic characteristics of cryopreserved embryos: a study using videocinematography. Fertil Steril. 1988;49(5):827–34.

    CAS  PubMed  Google Scholar 

  39. Payne D, Flaherty SP, Barry MF, Matthews CD. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod. 1997;12(3):532–41.

    Article  CAS  PubMed  Google Scholar 

  40. Hardarson T, Lofman C, Coull G, Sjogren A, Hamberger L, Edwards RG. Internalization of cellular fragments in a human embryo: time-lapse recordings. Reprod Biomed Online. 2002;5(1):36–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  42. Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98(6):1481–9.

    Article  PubMed  Google Scholar 

  43. Herrero J, Meseguer M Selection of high potential embryos using time-lapse imaging: the era of morphokinetics. Fertil Steril. 2013;99(4):1030–4.

    Article  PubMed  Google Scholar 

  44. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21.

    Article  CAS  PubMed  Google Scholar 

  45. Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Renard JP, Philippon A, Menezo Y. In-vitro uptake of glucose by bovine blastocysts. J Reprod Fertil. 1980;58(1):161–4.

    Article  CAS  PubMed  Google Scholar 

  47. Gardner DK, Leese HJ. Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool. 1987;242(1):103–5.

    Article  CAS  PubMed  Google Scholar 

  48. Lane M, Gardner DK. Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod. 1996;11(9):1975–8.

    Article  CAS  PubMed  Google Scholar 

  49. Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76(6):1175–80.

    Article  CAS  PubMed  Google Scholar 

  50. Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, Rutherford AJ, et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod. 2002;17(4):999–1005.

    Article  CAS  PubMed  Google Scholar 

  51. Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19(10):2319–24.

    Article  CAS  PubMed  Google Scholar 

  52. Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16(9):373–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ellis DI, Goodacre R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst. 2006;131(8):875–85.

    Article  CAS  PubMed  Google Scholar 

  54. Seli E, Sakkas D, Scott R, Kwok SH, Rosendahl S, Burns DH Non-invasive metabolomic profiling of embryo culture media using Raman and near infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007;88(5): 1350–7.

    Article  PubMed  Google Scholar 

  55. Seli E, Vergouw CG, Morita H, Botros L, Roos P, Lambalk CB, et al. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril. 2010;94(2):535–42.

    Article  PubMed  Google Scholar 

  56. Vergouw CG, Botros LL, Roos P, Lens JW, Schats R, Hompes PG, et al. Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum Reprod. 2008;23(7):1499–504.

    Article  CAS  PubMed  Google Scholar 

  57. Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril. 2008;90(1):77–83.

    Article  PubMed  Google Scholar 

  58. Seli E, Bruce C, Botros L, Henson M, Roos P, Judge K, et al. Receiver operating characteristic (ROC) analysis of day 5 morphology grading and metabolomic Viability Score on predicting implantation outcome. J Assist Reprod Genet. 2011;28(2):137–44.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Ahlstrom A, Wikland M, Rogberg L, Barnett JS, Tucker M, Hardarson T Cross-validation and predictive value of near-infrared spectroscopy algorithms for day-5 blastocyst transfer. Reprod Biomed Online. 2011.

    Google Scholar 

  60. Vergouw CG, Kieslinger DC, Kostelijk EH, Botros LL, Schats R, Hompes PG, et al. Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: a randomized controlled trial. Hum Reprod. 2012;27(8):2304–11.

    Article  CAS  PubMed  Google Scholar 

  61. Hardarson T, Ahlstrom A, Rogberg L, Botros L, Hillensjo T, Westlander G, et al. Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Reprod. 2012;27(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  62. Sfontouris IA, Lainas GT, Sakkas D, Zorzovilis IZ, Petsas GK, Lainas TG. Non-invasive metabolomic analysis using a commercial NIR instrument for embryo selection. J Hum Reprod Sci. 2013;6(2):133–9.

    Google Scholar 

  63. Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR, et al. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  64. Wells D, Alfarawati S, Fragouli E. Use of comprehensive chromosomal screening for embryo assessment: microarrays and CGH. Mol Hum Reprod. 2008;14(12):703–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. A non-invasive method for measuring preimplantation embryo physiology. Zygote. 2000;8(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  66. Trimarchi JR, Liu L, Smith PJ, Keefe DL. Noninvasive measurement of potassium efflux as an early indicator of cell death in mouse embryos. Biol Reprod. 2000;63(3):851–7.

    Article  CAS  PubMed  Google Scholar 

  67. Ottosen LD, Hindkjaer J, Lindenberg S, Ingerslev HJ. Murine pre-embryo oxygen consumption and developmental competence. J Assist Reprod Genet. 2007;24(8):359–65.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Lopes AS, Larsen LH, Ramsing N, Lovendahl P, Raty M, Peippo J, et al. Respiration rates of individual bovine in vitro-produced embryos measured with a novel, non-invasive and highly sensitive microsensor system. Reproduction. 2005;130(5):669–79.

    Article  CAS  PubMed  Google Scholar 

  69. Tejera A, Herrero J, Viloria T, Romero JL, Gamiz P, Meseguer M. Time-dependent O2 consumption patterns determined optimal time ranges for selecting viable human embryos. Fertil Steril. 2012;98(4):849–57.

    Article  PubMed  Google Scholar 

  70. Bedaiwy MA, Mahfouz RZ, Goldberg JM, Sharma R, Falcone T, Abdel Hafez MF, et al. Relationship of reactive oxygen species levels in day 3 culture media to the outcome of in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94(6):2037–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denny Sakkas PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakkas, D. (2014). Morphological and Metabolic Assessment of Oocytes and Embryos. In: Gamete and Embryo Selection. SpringerBriefs in Reproductive Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0989-6_1

Download citation

Publish with us

Policies and ethics