Skip to main content

Design Considerations for Small Animal PET Scanners

  • Chapter
  • First Online:
Molecular Imaging of Small Animals

Abstract

Positron emission tomography (PET) is an established imaging technique currently used for the clinical management of disease in oncology, cardiology and neurology [1–3]. PET is nowadays integrated in the clinical routine and is acknowledged as a sensitive clinical molecular imaging method. In addition to clinical applications, PET is also an active research tool in preclinical imaging with somewhat different applications. In order to clarify the specific goals of preclinical imaging, which is the focus of this book, the following sub-sections will outline the differences between clinical and preclinical PET imaging in terms of applications and system performance requirements. Following that, this chapter will cover in more detail basic design considerations of preclinical PET scanners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468-81.

    Article  PubMed  Google Scholar 

  2. Schwaiger M, Ziegler S, Nekolla SG (2005) PET/CT: challenge for nuclear cardiology. J Nucl Med 46:1664-78.

    PubMed  Google Scholar 

  3. Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32:623-48; discussion 649-50.

    CAS  PubMed  Google Scholar 

  4. Pellegrino D, Cicchetti F, Wang X, Zhu A, Yu M, Saint-Pierre M, et al. (2007) Modulation of dopaminergic and glutamatergic brain function: PET studies on Parkinsonian rats. J Nucl Med 48:1147-53.

    Article  CAS  PubMed  Google Scholar 

  5. Stegger L, Hoffmeier AN, Schafers KP, Hermann S, Schober O, Schafers MA, et al. (2006) Accurate noninvasive measurement of infarct size in mice with high-resolution PET. J Nucl Med 47:1837-44.

    PubMed  Google Scholar 

  6. Fowler JS, Kroll C, Ferrieri R, Alexoff D, Logan J, Dewey SL, et al. (2007) PET studies of d-methamphetamine pharmacokinetics in primates: comparison with l-methamphetamine and ( --)-cocaine. J Nucl Med 48:1724-32.

    Google Scholar 

  7. Munk OL, Bass L, Roelsgaard K, Bender D, Hansen SB, Keiding S (2001) Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. J Nucl Med 42:795-801.

    CAS  PubMed  Google Scholar 

  8. Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. (1997) Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 38:1614-23.

    CAS  Google Scholar 

  9. Levin CS (2005) Primer on molecular imaging technology. Eur J Nucl Med Mol Imaging 32 Suppl 2:S325-45.

    Article  PubMed  Google Scholar 

  10. Levin CS (2008) New imaging technologies to enhance the molecular sensitivity of positron emission tomography. Proceedings of the IEEE 96:439-467.

    Article  CAS  Google Scholar 

  11. Schafers KP, Reader AJ, Kriens M, Knoess C, Schober O, Schafers M (2005) Performance evaluation of the 32-module quadHIDAC small-animal PET scanner. J Nucl Med 46:996-1004.

    PubMed  Google Scholar 

  12. Stickel JR, Qi J, Cherry SR (2007) Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications. J Nucl Med 48:115-21.

    PubMed  Google Scholar 

  13. Visvikis D, Lefevre T, Lamare F, Kontaxakis G, Santos A, Darambara D (2006) Monte Carlo based performance assessment of different animal PET architectures using pixellated CZT detectors. Nucl Instr Meth A 569:225-229.

    Article  CAS  Google Scholar 

  14. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44:781-99.

    Article  CAS  PubMed  Google Scholar 

  15. Cherry SR, Phelps ME, Sorenson JA (2003) Physics in nuclear medicine, 3rd ed. Philadelphia, PA: Saunders.

    Google Scholar 

  16. Phelps ME (2004) PET molecular imaging and its biological applications. New York: Springer.

    Google Scholar 

  17. Yang YF, Cherry SR (2006) Observations regarding scatter fraction and NEC measurements for small animal PET. IEEE Trans Nucl Sci 53:127-132.

    Article  Google Scholar 

  18. Pratx G, Levin CS (2009) Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors. Phys Med Biol 54:5073-94.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Rafecas M, Boning G, Pichler BJ, Lorenz E, Schwaiger M, Ziegler SI (2003) Inter-crystal scatter in a dual layer, high resolution LSO-APD positron emission tomograph. Phys Med Biol 48:821-48.

    Article  CAS  PubMed  Google Scholar 

  20. Huber JS, Moses WW, Jones WF, Watson CC (2002) Effect of 176Lu background on singles transmission for LSO-based PET cameras. Phys Med Biol 47:3535-41.

    Article  CAS  PubMed  Google Scholar 

  21. Watson CC, Casey ME, Eriksson L, Mulnix T, Adams D, Bendriem B (2004) NEMA NU 2 performance tests for scanners with intrinsic radioactivity. J Nucl Med 45:822-6.

    CAS  PubMed  Google Scholar 

  22. Surti S, Karp JS, Freifelder R, Liu F (2000) Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide. IEEE Trans Nucl Sci 47:1030-1036.

    Article  CAS  Google Scholar 

  23. Knoll GF (2000) Radiation detection and measurement, 3rd ed. New York ; Toronto: Wiley.

    Google Scholar 

  24. Joung J, Miyaoka RS, Lewellen TK (2002) cMiCE: a high resolution animal PET using continuous LSO with a statistics based positioning scheme. Nucl Instr Meth A 489:584-598.

    Article  CAS  Google Scholar 

  25. Monzo JM, Lerche CW, Martinez JD, Esteve R, Toledo J, Gadea R, et al. (2009) Analysis of time resolution in a dual head LSO plus PSPMT PET system using low pass filter interpolation and digital constant fraction discriminator techniques. Nucl Instr Meth A 604:347-350.

    Article  CAS  Google Scholar 

  26. Seidel J, Vaquero JJ, Barbosa F, Lee IJ, Cuevas C, Green MV (2000) Scintillator identification and performance characteristics of LSO and GSO PSPMT detector modules combined through common X and Y resistive dividers. IEEE Trans Nucl Sci 47:1640-1645.

    Article  Google Scholar 

  27. Levin CS (2002) Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection. IEEE Trans Nucl Sci 49:2236-2243.

    Article  Google Scholar 

  28. Pichler BJ, Bernecker F, Boning G, Rafecas M, Pimpl W, Schwaiger M, et al. (2001) A 4 × 8 APD array, consisting of two monolithic silicon wafers, coupled to a 32-channel LSO matrix for high-resolution PET. IEEE Trans Nucl Sci 48:1391-1396.

    Article  Google Scholar 

  29. Ziegler SI, Pichler BJ, Boening G, Rafecas M, Pimpl W, Lorenz E, et al. (2001) A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 28:136-43.

    Article  CAS  PubMed  Google Scholar 

  30. Habte F, Foudray AM, Olcott PD, Levin CS (2007) Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography. Phys Med Biol 52:3753-72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yang Y, Dokhale PA, Silverman RW, Shah KS, McClish MA, Farrell R, et al. (2006) Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes. Phys Med Biol 51:2131-42.

    Article  PubMed  Google Scholar 

  32. Rafecas M, Boning G, Pichler BJ, Lorenz E, Schwaiger M, Ziegler SI (2001) A Monte Carlo study of high-resolution PET with granulated dual-layer detectors. IEEE Trans Nucl Sci 48:1490-1495.

    Article  Google Scholar 

  33. Zhang J, Foudray AMK, Cott PD, Farrell R, Shah K, Levin CS (2007) Performance characterization of a novel thin position-sensitive avalanche photodiode for 1 mm resolution positron emission tomography. IEEE Trans Nucl Sci 54:415-421.

    Article  CAS  Google Scholar 

  34. Zhang J, Olcott PD, Chinn G, Foudray AM, Levine CS (2007) Study of the performance of a novel 1 mm resolution dual-panel PET camera design dedicated to breast cancer imaging using Monte Carlo simulation. Med Phys 34:689-702.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mosset JB, Devroede O, Krieguer M, Rey M, Vieira JM, Jung JH, et al. (2006) Development of an optimized LSO/LuYAP phoswich detector head for the Lausanne ClearPET demonstrator. IEEE Trans Nucl Sci 53:25-29.

    Article  Google Scholar 

  36. Seidel J, Vaquero JJ, Green MV (2003) Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: Comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 50:1347-1350.

    Article  Google Scholar 

  37. Lerche CW, Benlloch JM, Sanchez F, Pavon N, Escat B, Gimenez EN, et al. (2005) Depth of gamma-ray interaction within continuous crystals from the width of its scintillation light-distribution. IEEE Trans Nucl Sci 52:560-572.

    Article  CAS  Google Scholar 

  38. Maas MC, Schaart DR, van der Laan DJ, Bruyndonckx P, Lemaitre C, Beekman FJ, et al. (2009) Monolithic scintillator PET detectors with intrinsic depth-of-interaction correction. Phys Med Biol 54:1893-908.

    Article  PubMed  Google Scholar 

  39. Schaart DR, van Dam HT, Seifert S, Vinke R, Dendooven P, Lohner H, et al. (2009) A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol 54:3501-12.

    Article  CAS  PubMed  Google Scholar 

  40. Lucignani G (2009) Respiratory and cardiac motion correction with 4D PET imaging: shooting at moving targets. Eur J Nucl Med Mol Imaging 36:315-9.

    Article  PubMed  Google Scholar 

  41. Dawood M, Kosters T, Fieseler M, Buther F, Jiang X, Wubbeling F, et al. (2008) Motion correction in respiratory gated cardiac PET/CT using multi-scale optical flow. Med Image Comput Comput Assist Interv 11:155-62.

    PubMed  Google Scholar 

  42. Lamare F, Cresson T, Savean J, Cheze Le Rest C, Reader AJ, Visvikis D (2007) Respiratory motion correction for PET oncology applications using affine transformation of list mode data. Phys Med Biol 52:121-40.

    Article  CAS  PubMed  Google Scholar 

  43. Pichler BJ, Swann BK, Rochelle J, Nutt RE, Cherry SR, Siegel SB (2004) Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 49:4305-19.

    Article  CAS  PubMed  Google Scholar 

  44. Siegel S, Silverman RW, Shao YP, Cherry SR (1996) Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT. IEEE Trans Nucl Sci 43:1634-1641.

    Article  Google Scholar 

  45. Daube-Witherspoon ME, Carson RE (1991) Unified deadtime correction model for PET. IEEE Trans Med Imaging 10:267-75.

    Article  CAS  PubMed  Google Scholar 

  46. Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF (2009) Performance evaluation of the Inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med 50:401-8.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. (1997) MicroPET: A high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44:1161-1166.

    Article  CAS  Google Scholar 

  48. Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. (2005) Performance evaluation of the microPET Focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 46:455-63.

    PubMed  Google Scholar 

  49. Huisman MC, Reder S, Weber AW, Ziegler SI, Schwaiger M (2007) Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging 34:532-40.

    Article  PubMed  Google Scholar 

  50. Wang Y, Seidel J, Tsui BM, Vaquero JJ, Pomper MG (2006) Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47:1891-900.

    PubMed  Google Scholar 

  51. Roldan PS, Chereul E, Dietzel O, Magnier L, Pautrot C, Rbah L, et al. (2007) Raytest ClearPET (TM), a new generation small animal PET scanner. Nucl Instr Meth Phys Res A 571:498-501.

    Article  Google Scholar 

  52. Bergeron M, Cadorette J, Beaudoin JF, Lepage MD, Robert G, Selivanov V, et al. (2009) Performance evaluation of the LabPET APD-based digital PET scanner. IEEE Trans Nucl Sci 56:10-16.

    Article  Google Scholar 

  53. Parnham KB, Chowdhury S, Li J, Wagenaar DJ, Patt BE (2006) Second-generation, tri-modality, pre-clinical imaging system. NSS/MIC Conf Rec: 1802-1805

    Google Scholar 

  54. Vaska P, Woody CL, Schlyer DJ, Shokouhi S, Stoll SP, Pratte JF, et al. (2004) RatCAP: Miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Trans Nucl Sci 51:2718-2722.

    Article  Google Scholar 

  55. Tai YC, Wu H, Pal D, O’Sullivan JA (2008) Virtual-pinhole PET. J Nucl Med 49:471-9.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. (2005) U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 46:1194-200.

    PubMed  Google Scholar 

  57. DiFilippo FP (2008) Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners. Phys Med Biol 53:4185-4201.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Palmer J, Wollmer P (1990) Pinhole emission computed tomography: method and experimental evaluation. Phys Med Biol 35:339-50.

    Article  CAS  PubMed  Google Scholar 

  59. Shokouhi S, Metzler SD, Wilson DW, Peterson TE (2009) Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT. Phys Med Biol 54:207-225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) with grants R01CA119056 from NCI, R33EB003283 from NIBIB, R01CA120474 from NCI and P50CA114747 from NCI. The authors would also like to acknowledge the support of GE Healthcare and the AXA Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spanoudaki, V.C., Levin, C.S. (2014). Design Considerations for Small Animal PET Scanners. In: Zaidi, H. (eds) Molecular Imaging of Small Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0894-3_5

Download citation

Publish with us

Policies and ethics