Skip to main content

Single-Pulse Transcranial Magnetic Stimulation (TMS) Protocols and Outcome Measures

  • Protocol
  • First Online:
Transcranial Magnetic Stimulation

Part of the book series: Neuromethods ((NM,volume 89))

Abstract

The integrity of the brain circuitries can be quantified through application of single pulse transcranial magnetic stimulation (TMS) to the cortex and concurrent recording of the neurophysiological response through electromyography at the periphery, and more recently centrally through electroencephalography and functional magnetic resonance imaging. In this chapter, we first introduce the neurophysiological techniques and the corresponding outcome measures that have been employed to capture the neural response to a single TMS pulse. We then describe the physical and physiological factors that can affect the TMS outcome measures and should be carefully controlled for. We then introduce single pulse TMS protocols motor threshold, contralateral silent period, ipsilateral silent period, and the input/output curve. We describe the neurobiological mechanisms and brain circuitries that each protocol examines, and provide a step-by-step guideline for conducting each protocol. Finally, we provide an overview of the application of single pulse TMS protocols in basic and cognitive neuroscience, and clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hess CW, Mills KR, Murray NM (1987) Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol 388:397–419

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412:449–473

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Knikou M (2008) The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods 171:1–12

    PubMed  Google Scholar 

  4. Boyd SG, Rothwell JC, Cowan JM, Webb PJ, Morley T, Asselman P, Marsden CD (1986) A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry 49:251–257

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Burke D, Hicks R, Gandevia SC, Stephen J, Woodforth I, Crawford M (1993) Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation. J Physiol 470:383–393

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1996) Direct and indirect activation of human corticospinal neurons by transcranial magnetic and electrical stimulation. Neurosci Lett 210:45–48

    CAS  PubMed  Google Scholar 

  7. Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109: 397–401

    PubMed  Google Scholar 

  8. Di Lazzaro V, Restuccia P, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508:625–633

    PubMed  PubMed Central  Google Scholar 

  9. Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (1999) Direct recordings of descending volleys after transcranial magnetic and electric motor cortex stimulation in conscious humans. Electroencephalogr Clin Neurophysiol Suppl 51: 120–126

    PubMed  Google Scholar 

  10. Di Lazzaro V, Oliviero A, Profice P, Meglio M, Cioni B, Tonali P, Rothwell JC (2001) Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans. J Physiol 537:1047–1058

    PubMed  PubMed Central  Google Scholar 

  11. Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, Rothwell JC (2001) The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res 138: 268–273

    PubMed  Google Scholar 

  12. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Insola A, Mazzone P, Tonali PA, Rothwell JC (2002) Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape. Clin Neurophysiol 113:114–119

    PubMed  Google Scholar 

  13. Di Lazzaro V, Oliviero A, Pilato F, Mazzone P, Insola A, Ranieri F, Tonali PA (2003) Corticospinal volleys evoked by transcranial stimulation of the brain in conscious humans. Neurol Res 25:143–150

    PubMed  Google Scholar 

  14. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Meglio M, Cioni B, Papacci F, Tonali PA, Rothwell JC (2004) Comparison of descending volleys evoked by transcranial and epidural motor cortex stimulation in a conscious patient with bulbar pain. Clin Neurophysiol 115:834–838

    PubMed  Google Scholar 

  15. Amassian VE, Stewart M, Quirk GJ, Rosenthal JL (1987) Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 20:74–93

    CAS  PubMed  Google Scholar 

  16. Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Sole J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882

    CAS  PubMed  Google Scholar 

  17. Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A, Pilato F (2012) I-wave origin and modulation. Brain Stimul 5(4):512–525

    PubMed  Google Scholar 

  18. Ziemann U, Rothwell JC (2000) I-waves in motor cortex. J Clin Neurophysiol 17: 397–405

    CAS  PubMed  Google Scholar 

  19. Cracco RQ, Amassian VE, Maccabee PJ, Cracco JB (1989) Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr Clin Neurophysiol 74:417–424

    CAS  PubMed  Google Scholar 

  20. Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Naatanen R, Katila T (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8:3537–3540

    CAS  PubMed  Google Scholar 

  21. Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990

    CAS  PubMed  Google Scholar 

  22. Kahkonen S, Kesaniemi M, Nikouline VV, Karhu J, Ollikainen M, Holi M, Ilmoniemi RJ (2001) Ethanol modulates cortical activity: direct evidence with combined TMS and EEG. Neuroimage 14:322–328

    CAS  PubMed  Google Scholar 

  23. Kahkonen S, Wilenius J, Nikulin VV, Ollikainen M, Ilmoniemi RJ (2003) Alcohol reduces prefrontal cortical excitability in humans: a combined TMS and EEG study. Neuropsychopharmacology 28:747–754

    PubMed  Google Scholar 

  24. Kahkonen S, Komssi S, Wilenius J, Ilmoniemi RJ (2005) Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. Neuroimage 24: 955–960

    CAS  PubMed  Google Scholar 

  25. Komssi S, Aronen HJ, Huttunen J, Kesaniemi M, Soinne L, Nikouline VV, Ollikainen M, Roine RO, Karhu J, Savolainen S, Ilmoniemi RJ (2002) Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113:175–184

    PubMed  Google Scholar 

  26. Komssi S, Kahkonen S (2006) The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research. Brain Res Brain Res Rev 52:183–192

    Google Scholar 

  27. Nikulin VV, Kicic D, Kahkonen S, Ilmoniemi RJ (2003) Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci 18:1206–1212

    PubMed  Google Scholar 

  28. Thut G, Northoff G, Ives JR, Kamitani Y, Pfennig A, Kampmann F, Schomer DL, Pascual-Leone A (2003) Effects of single-pulse transcranial magnetic stimulation (TMS) on functional brain activity: a combined event-related TMS and evoked potential study. Clin Neurophysiol 114:2071–2080

    CAS  PubMed  Google Scholar 

  29. Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, Tononi G (2006) A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull 69:86–94

    CAS  PubMed  Google Scholar 

  30. Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, Cirelli C, Tononi G (2009) Cortical firing and sleep homeostasis. Neuron 63:865–878

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Huber R, Maki H, Rosanova M, Casarotto S, Canali P, Casali AG, Tononi G, Massimini M (2013) Human cortical excitability increases with time awake. Cereb Cortex 23(2): 332–338

    PubMed  PubMed Central  Google Scholar 

  32. Lioumis P, Kicic D, Savolainen P, Makela JP, Kahkonen S (2009) Reproducibility of TMS-Evoked EEG responses. Hum Brain Mapp 30:1387–1396

    PubMed  Google Scholar 

  33. Farzan F, Barr MS, Levinson AJ, Chen R, Wong W, Fitzgerald PB, Daskalakis ZJ (2010) Reliability of long interval cortical inhibition in healthy human subjects: a TMS-EEG study. J Neurophysiol 104(3):1339–1346

    PubMed  Google Scholar 

  34. Bohning DE, Shastri A, Wassermann EM, Ziemann U, Lorberbaum JP, Nahas Z, Lomarev MP, George MS (2000) BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Reson Imaging 11:569–574

    CAS  PubMed  Google Scholar 

  35. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184

    CAS  PubMed  Google Scholar 

  36. Pogarell O, Koch W, Popperl G, Tatsch K, Jakob F, Zwanzger P, Mulert C, Rupprecht R, Moller HJ, Hegerl U, Padberg F (2006) Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study. J Psychiatr Res 40:307–314

    PubMed  Google Scholar 

  37. Pogarell O, Koch W, Popperl G, Tatsch K, Jakob F, Mulert C, Grossheinrich N, Rupprecht R, Moller HJ, Hegerl U, Padberg F (2007) Acute prefrontal rTMS increases striatal dopamine to a similar degree as D-amphetamine. Psychiatry Res 156:251–255

    CAS  PubMed  Google Scholar 

  38. Siebner HR, Bergmann TO, Bestmann S, Massimini M, Johansen-Berg H, Mochizuki H, Bohning DE, Boorman ED, Groppa S, Miniussi C, Pascual-Leone A, Huber R, Taylor PC, Ilmoniemi RJ, De Gennaro L, Strafella AP, Kahkonen S, Kloppel S, Frisoni GB, George MS, Hallett M, Brandt SA, Rushworth MF, Ziemann U, Rothwell JC, Ward N, Cohen LG, Baudewig J, Paus T, Ugawa Y, Rossini PM (2009) Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul 2:58–80

    PubMed  Google Scholar 

  39. Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC (2008) Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res 191: 383–402

    PubMed  Google Scholar 

  40. Maki H, Ilmoniemi RJ (2010) The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation. Neurosci Lett 478(1):24–28

    PubMed  Google Scholar 

  41. Maki H, Ilmoniemi RJ (2010) EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations. Clin Neurophysiol 121: 492–501

    PubMed  Google Scholar 

  42. Chipchase L, Schabrun S, Cohen L, Hodges P, Ridding M, Rothwell J, Taylor J, Ziemann U (2012) A checklist for assessing the methodological quality of studies using transcranial magnetic stimulation to study the motor system: an international consensus study. Clin Neurophysiol 123(9):1698–1704

    PubMed  Google Scholar 

  43. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    CAS  PubMed  Google Scholar 

  44. Komssi S, Lonen S, Ilmoniemi RJ (2004) The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 21:154–164

    PubMed  Google Scholar 

  45. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    CAS  PubMed  Google Scholar 

  46. Gattinger N, Moessnang G, Gleich B (2012) flexTMS—a novel repetitive transcranial magnetic stimulation device with freely programmable stimulus currents. IEEE Trans Biomed Eng 59:1962–1970

    PubMed  Google Scholar 

  47. Sommer M, Alfaro A, Rummel M, Speck S, Lang N, Tings T, Paulus W (2006) Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex. Clin Neurophysiol 117:838–844

    PubMed  Google Scholar 

  48. Di Lazzaro V, Oliviero A, Mazzone P, Insola A, Pilato F, Saturno E, Accurso A, Tonali P, Rothwell JC (2001) Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans. Exp Brain Res 141: 121–127

    PubMed  Google Scholar 

  49. Rothkegel H, Sommer M, Paulus W, Lang N (2010) Impact of pulse duration in single pulse TMS. Clin Neurophysiol 121:1915–1921

    CAS  PubMed  Google Scholar 

  50. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115: 255–266

    PubMed  Google Scholar 

  51. Wagner T, Gangitano M, Romero R, Theoret H, Kobayashi M, Anschel D, Ives J, Cuffin N, Schomer D, Pascual-Leone A (2004) Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain. Neurosci Lett 354: 91–94

    CAS  PubMed  Google Scholar 

  52. Pell GS, Roth Y, Zangen A (2010) Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol 93: 59–98

    PubMed  Google Scholar 

  53. Thielscher A, Opitz A, Windhoff M (2011) Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 54:234–243

    PubMed  Google Scholar 

  54. Fox PT, Narayana S, Tandon N, Sandoval H, Fox SP, Kochunov P, Lancaster JL (2004) Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp 22:1–14

    PubMed  Google Scholar 

  55. Niehaus L, Meyer BU, Weyh T (2000) Influence of pulse configuration and direction of coil current on excitatory effects of magnetic motor cortex and nerve stimulation. Clin Neurophysiol 111:75–80

    CAS  PubMed  Google Scholar 

  56. Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett M (1992) Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J Clin Neurophysiol 9: 132–136

    CAS  PubMed  Google Scholar 

  57. Day BL, Rothwell JC, Thompson PD, Dick JP, Cowan JM, Berardelli A, Marsden CD (1987) Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain 110(Pt 5):1191–1209

    PubMed  Google Scholar 

  58. Sommer M, Norden C, Schmack L, Rothkegel H, Lang N, Paulus W (2013) Opposite optimal current flow directions for induction of neuroplasticity and excitation threshold in the human motor cortex. Brain Stimul 6(3): 363–370

    PubMed  Google Scholar 

  59. Meyer BU, Diehl R, Steinmetz H, Britton TC, Benecke R (1991) Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. Electroencephalogr Clin Neurophysiol Suppl 43:121–134

    CAS  PubMed  Google Scholar 

  60. Kammer T, Beck S, Erb M, Grodd W (2001) The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin Neurophysiol 112: 2015–2021

    CAS  PubMed  Google Scholar 

  61. Kammer T, Vorwerg M, Herrnberger B (2007) Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation. Neuroimage 36: 313–321

    PubMed  Google Scholar 

  62. Hill AC, Davey NJ, Kennard C (2000) Current orientation induced by magnetic stimulation influences a cognitive task. Neuroreport 11:3257–3259

    CAS  PubMed  Google Scholar 

  63. Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A (2011) How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. Neuroimage 58:849–859

    PubMed  Google Scholar 

  64. Rudiak D, Marg E (1994) Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol 93: 358–371

    CAS  PubMed  Google Scholar 

  65. Amassian VE, Eberle L, Maccabee PJ, Cracco RQ (1992) Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: the significance of fiber bending in excitation. Electroencephalogr Clin Neurophysiol 85:291–301

    CAS  PubMed  Google Scholar 

  66. Maccabee PJ, Amassian VE, Eberle LP, Cracco RQ (1993) Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. J Physiol 460:201–219

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nagarajan SS, Durand DM, Warman EN (1993) Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Trans Biomed Eng 40:1175–1188

    CAS  PubMed  Google Scholar 

  68. Roth BJ, Saypol JM, Hallett M, Cohen LG (1991) A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:47–56

    CAS  PubMed  Google Scholar 

  69. Scivill I, Barker AT, Freeston IL (1996) Finite element modeling of magnetic stimulation of the spine. In: Proc. 18th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society. pp 393–394

    Google Scholar 

  70. Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A (2004) Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng 51: 1586–1598

    PubMed  Google Scholar 

  71. Pridmore S, Fernandes Filho JA, Nahas Z, Liberatos C, George MS (1998) Motor threshold in transcranial magnetic stimulation: a comparison of a neurophysiological method and a visualization of movement method. J ECT 14:25–27

    CAS  PubMed  Google Scholar 

  72. Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20: 570–576

    CAS  PubMed  Google Scholar 

  73. Awiszus F (2003) TMS and threshold hunting. Suppl Clin Neurophysiol 56:13–23

    PubMed  Google Scholar 

  74. Tranulis C, Gueguen B, Pham-Scottez A, Vacheron MN, Cabelguen G, Costantini A, Valero G, Galinovski A (2006) Motor threshold in transcranial magnetic stimulation: comparison of three estimation methods. Neurophysiol Clin 36:1–7

    CAS  PubMed  Google Scholar 

  75. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120: 2008–2039

    PubMed  PubMed Central  Google Scholar 

  76. Awiszus F (2011) Fast estimation of transcranial magnetic stimulation motor threshold: is it safe? Brain Stimul 4:58–59; discussion 60–63

    PubMed  Google Scholar 

  77. Brasil-Neto JP, McShane LM, Fuhr P, Hallett M, Cohen LG (1992) Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol 85:9–16

    CAS  PubMed  Google Scholar 

  78. Chen R, Samii A, Canos M, Wassermann EM, Hallett M (1997) Effects of phenytoin on cortical excitability in humans. Neurology 49:881–883

    CAS  PubMed  Google Scholar 

  79. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378

    CAS  PubMed  Google Scholar 

  80. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    CAS  PubMed  Google Scholar 

  81. Ziemann U (2004) TMS and drugs. Clin Neurophysiol 115:1717–1729

    CAS  PubMed  Google Scholar 

  82. Kloppel S, Baumer T, Kroeger J, Koch MA, Buchel C, Munchau A, Siebner HR (2008) The cortical motor threshold reflects microstructural properties of cerebral white matter. Neuroimage 40:1782–1791

    PubMed  Google Scholar 

  83. Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, Mills K, Rosler KM, Triggs WJ, Ugawa Y, Ziemann U (2008) The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 119:504–532

    PubMed  Google Scholar 

  84. Rossini PM, Rosinni L, Ferreri F (2010) Brain-behavior relations: transcranial magnetic stimulation: a review. IEEE Eng Med Biol Mag 29:84–95

    PubMed  Google Scholar 

  85. Chen R, Tam A, Butefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG (1998) Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80:2870–2881

    CAS  PubMed  Google Scholar 

  86. Kozel FA, Nahas Z, deBrux C, Molloy M, Lorberbaum JP, Bohning D, Risch SC, George MS (2000) How coil-cortex distance relates to age, motor threshold, and antidepressant response to repetitive transcranial magnetic stimulation. J Neuropsychiatry Clin Neurosci 12:376–384

    CAS  PubMed  Google Scholar 

  87. McConnell KA, Nahas Z, Shastri A, Lorberbaum JP, Kozel FA, Bohning DE, George MS (2001) The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biol Psychiatry 49:454–459

    CAS  PubMed  Google Scholar 

  88. Herbsman T, Forster L, Molnar C, Dougherty R, Christie D, Koola J, Ramsey D, Morgan PS, Bohning DE, George MS, Nahas Z (2009) Motor threshold in transcranial magnetic stimulation: the impact of white matter fiber orientation and skull-to-cortex distance. Hum Brain Mapp 30:2044–2055

    PubMed  PubMed Central  Google Scholar 

  89. Danner N, Kononen M, Saisanen L, Laitinen R, Mervaala E, Julkunen P (2012) Effect of individual anatomy on resting motor threshold—computed electric field as a measure of cortical excitability. J Neurosci Methods 203:298–304

    PubMed  Google Scholar 

  90. Izumi S, Findley TW, Ikai T, Andrews J, Daum M, Chino N (1995) Facilitatory effect of thinking about movement on motor-evoked potentials to transcranial magnetic stimulation of the brain. Am J Phys Med Rehabil 74:207–213

    CAS  PubMed  Google Scholar 

  91. Rossini PM, Desiato MT, Lavaroni F, Caramia MD (1991) Brain excitability and electroencephalographic activation: non-invasive evaluation in healthy humans via transcranial magnetic stimulation. Brain Res 567:111–119

    CAS  PubMed  Google Scholar 

  92. Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol 112:250–258

    CAS  PubMed  Google Scholar 

  93. Herwig U, Schonfeldt-Lecuona C, Wunderlich AP, von Tiesenhausen C, Thielscher A, Walter H, Spitzer M (2001) The navigation of transcranial magnetic stimulation. Psychiatry Res 108:123–131

    CAS  PubMed  Google Scholar 

  94. Julkunen P, Saisanen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Kononen M (2009) Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44:790–795

    PubMed  Google Scholar 

  95. Malcolm MP, Triggs WJ, Light KE, Shechtman O, Khandekar G, Gonzalez Rothi LJ (2006) Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clin Neurophysiol 117:1037–1046

    CAS  PubMed  Google Scholar 

  96. Cacchio A, Cimini N, Alosi P, Santilli V, Marrelli A (2009) Reliability of transcranial magnetic stimulation-related measurements of tibialis anterior muscle in healthy subjects. Clin Neurophysiol 120:414–419

    PubMed  Google Scholar 

  97. van der Kamp W, Zwinderman AH, Ferrari MD, van Dijk JG (1996) Cortical excitability and response variability of transcranial magnetic stimulation. J Clin Neurophysiol 13: 164–171

    PubMed  Google Scholar 

  98. Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    CAS  PubMed  Google Scholar 

  99. Ridding MC, Rothwell JC (1997) Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr Clin Neurophysiol 105:340–344

    CAS  PubMed  Google Scholar 

  100. Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2001) Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol 112: 931–937

    CAS  PubMed  Google Scholar 

  101. Brouwer B, Ashby P (1990) Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurophysiol 76:509–519

    CAS  PubMed  Google Scholar 

  102. Stagg CJ, Bestmann S, Constantinescu AO, Moreno LM, Allman C, Mekle R, Woolrich M, Near J, Johansen-Berg H, Rothwell JC (2011) Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J Physiol 589:5845–5855

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Pearce AJ, Clark RA, Kidgell DJ (2013) A comparison of two methods in acquiring stimulus-response curves with transcranial magnetic stimulation. Brain Stimul 6(3): 306–309

    PubMed  Google Scholar 

  104. Ray J, McNamara B, Boniface S (2002) Acquisition and expression of proximal and distal upper limb stimulus-response curves to transcranial magnetic stimulation. Muscle Nerve 25:202–206

    PubMed  Google Scholar 

  105. Carroll TJ, Riek S, Carson RG (2001) Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Methods 112:193–202

    CAS  PubMed  Google Scholar 

  106. Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    CAS  PubMed  Google Scholar 

  107. Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466: 521–534

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Daskalakis ZJ, Molnar GF, Christensen BK, Sailer A, Fitzgerald PB, Chen R (2003) An automated method to determine the transcranial magnetic stimulation-induced contralateral silent period. Clin Neurophysiol 114: 938–944

    PubMed  Google Scholar 

  109. Kimiskidis VK, Papagiannopoulos S, Sotirakoglou K, Kazis DA, Kazis A, Mills KR (2005) Silent period to transcranial magnetic stimulation: construction and properties of stimulus-response curves in healthy volunteers. Exp Brain Res 163:21–31

    CAS  PubMed  Google Scholar 

  110. van Kuijk AA, Anker LC, Pasman JW, Hendriks JC, van Elswijk G, Geurts AC (2009) Stimulus-response characteristics of motor evoked potentials and silent periods in proximal and distal upper-extremity muscles. J Electromyogr Kinesiol 19:574–583

    PubMed  Google Scholar 

  111. Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41:1795–1799

    CAS  PubMed  Google Scholar 

  112. Meyer BU, Roricht S, Grafin von Einsiedel H, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118(Pt 2):429–440

    PubMed  Google Scholar 

  113. Wassermann EM, Pascual-Leone A, Hallett M (1994) Cortical motor representation of the ipsilateral hand and arm. Exp Brain Res 100:121–132

    CAS  PubMed  Google Scholar 

  114. Chen R, Lozano AM, Ashby P (1999) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128:539–542

    CAS  PubMed  Google Scholar 

  115. Siebner HR, Dressnandt J, Auer C, Conrad B (1998) Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 21:1209–1212

    CAS  PubMed  Google Scholar 

  116. Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517 (Pt 2):591–597

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Pierantozzi M, Marciani MG, Palmieri MG, Brusa L, Galati S, Caramia MD, Bernardi G, Stanzione P (2004) Effect of Vigabatrin on motor responses to transcranial magnetic stimulation: an effective tool to investigate in vivo GABAergic cortical inhibition in humans. Brain Res 1028:1–8

    CAS  PubMed  Google Scholar 

  118. Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 498(Pt 3): 817–823

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M (1994) Motor cortical inhibition and the dopaminergic system. Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson’s disease and drug-induced parkinsonism. Brain 117 (Pt 2):317–323

    PubMed  Google Scholar 

  120. Compta Y, Valls-Sole J, Valldeoriola F, Kumru H, Rumia J (2006) The silent period of the thenar muscles to contralateral and ipsilateral deep brain stimulation. Clin Neurophysiol 117:2512–2520

    PubMed  Google Scholar 

  121. Saisanen L, Pirinen E, Teitti S, Kononen M, Julkunen P, Maatta S, Karhu J (2008) Factors influencing cortical silent period: optimized stimulus location, intensity and muscle contraction. J Neurosci Methods 169:231–238

    PubMed  Google Scholar 

  122. Priori A, Berardelli A, Mercuri B, Inghilleri M, Manfredi M (1995) The effect of hyperventilation on motor cortical inhibition in humans: a study of the electromyographic silent period evoked by transcranial brain stimulation. Electroencephalogr Clin Neurophysiol 97:69–72

    CAS  PubMed  Google Scholar 

  123. Chen R, Yung D, Li JY (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264

    PubMed  Google Scholar 

  124. Petitjean M, Ko JY (2013) An age-related change in the ipsilateral silent period of a small hand muscle. Clin Neurophysiol 124(2):346–353

    PubMed  Google Scholar 

  125. Farzan F, Barr MS, Fitzgerald PB, Daskalakis ZJ (2011) Combination of transcranial magnetic stimulation with electromyography and electroencephalography: application in diagnosis of neuropsychiatric disorders. In: EMG methods for evaluating muscle and nerve function. Edited by Schwartz M: InTech Open Access

    Google Scholar 

  126. Voineskos AN, Farzan F, Barr MS, Lobaugh NJ, Mulsant BH, Chen R, Fitzgerald PB, Daskalakis ZJ (2010) The role of the corpus callosum in transcranial magnetic stimulation induced interhemispheric signal propagation. Biol Psychiatry 68:825–831

    PubMed  Google Scholar 

  127. Mochizuki H, Ugawa Y, Terao Y, Sakai KL (2006) Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans: a simultaneous recording with near-infrared spectroscopy. Exp Brain Res 169:302–310

    CAS  PubMed  Google Scholar 

  128. Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C (2005) Motor strokes: the lesion location determines motor excitability changes. Stroke 36:2648–2653

    PubMed  Google Scholar 

  129. Hendricks HT, Pasman JW, van Limbeek J, Zwarts MJ (2003) Motor evoked potentials in predicting recovery from upper extremity paralysis after acute stroke. Cerebrovasc Dis 16:265–271

    PubMed  Google Scholar 

  130. Hendricks HT, Pasman JW, van Limbeek J, Zwarts MJ (2003) Motor evoked potentials of the lower extremity in predicting motor recovery and ambulation after stroke: a cohort study. Arch Phys Med Rehabil 84:1373–1379

    PubMed  Google Scholar 

  131. Trompetto C, Assini A, Buccolieri A, Marchese R, Abbruzzese G (2000) Motor recovery following stroke: a transcranial magnetic stimulation study. Clin Neurophysiol 111:1860–1867

    CAS  PubMed  Google Scholar 

  132. Cicinelli P, Traversa R, Bassi A, Scivoletto G, Rossini PM (1997) Interhemispheric differences of hand muscle representation in human motor cortex. Muscle Nerve 20:535–542

    CAS  PubMed  Google Scholar 

  133. Niehaus L, Bajbouj M, Meyer BU (2003) Impact of interhemispheric inhibition on excitability of the non-lesioned motor cortex after acute stroke. Suppl Clin Neurophysiol 56:181–186

    PubMed  Google Scholar 

  134. Classen J, Schnitzler A, Binkofski F, Werhahn KJ, Kim YS, Kessler KR, Benecke R (1997) The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic. Brain 120(Pt 4):605–619

    PubMed  Google Scholar 

  135. Braune HJ, Fritz C (1995) Transcranial magnetic stimulation-evoked inhibition of voluntary muscle activity (silent period) is impaired in patients with ischemic hemispheric lesion. Stroke 26:550–553

    CAS  PubMed  Google Scholar 

  136. Battaglia F, Quartarone A, Ghilardi MF, Dattola R, Bagnato S, Rizzo V, Morgante L, Girlanda P (2006) Unilateral cerebellar stroke disrupts movement preparation and motor imagery. Clin Neurophysiol 117:1009–1016

    PubMed  Google Scholar 

  137. De Beaumont L, Lassonde M, Leclerc S, Theoret H (2007) Long-term and cumulative effects of sports concussion on motor cortex inhibition. Neurosurgery 61:329–336; discussion 336–337

    PubMed  Google Scholar 

  138. De Beaumont L, Theoret H, Mongeon D, Messier J, Leclerc S, Tremblay S, Ellemberg D, Lassonde M (2009) Brain function decline in healthy retired athletes who sustained their last sports concussion in early adulthood. Brain 132:695–708

    PubMed  Google Scholar 

  139. Tremblay S, de Beaumont L, Lassonde M, Theoret H (2011) Evidence for the specificity of intracortical inhibitory dysfunction in asymptomatic concussed athletes. J Neurotrauma 28:493–502

    PubMed  Google Scholar 

  140. Nakashima K, Wang Y, Shimoda M, Sakuma K, Takahashi K (1995) Shortened silent period produced by magnetic cortical stimulation in patients with Parkinson’s disease. J Neurol Sci 130:209–214

    CAS  PubMed  Google Scholar 

  141. Siebner HR, Mentschel C, Auer C, Lehner C, Conrad B (2000) Repetitive transcranial magnetic stimulation causes a short-term increase in the duration of the cortical silent period in patients with Parkinson’s disease. Neurosci Lett 284:147–150

    CAS  PubMed  Google Scholar 

  142. Fisher BE, Wu AD, Salem GJ, Song J, Lin CH, Yip J, Cen S, Gordon J, Jakowec M, Petzinger G (2008) The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson’s disease. Arch Phys Med Rehabil 89:1221–1229

    PubMed  PubMed Central  Google Scholar 

  143. Lefaucheur JP (2005) Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol 116:244–253

    CAS  PubMed  Google Scholar 

  144. Alagona G, Bella R, Ferri R, Carnemolla A, Pappalardo A, Costanzo E, Pennisi G (2001) Transcranial magnetic stimulation in Alzheimer disease: motor cortex excitability and cognitive severity. Neurosci Lett 314: 57–60

    CAS  PubMed  Google Scholar 

  145. de Carvalho M, de Mendonca A, Miranda PC, Garcia C, Luis ML (1997) Magnetic stimulation in Alzheimer’s disease. J Neurol 244:304–307

    PubMed  Google Scholar 

  146. Julkunen P, Jauhiainen AM, Kononen M, Paakkonen A, Karhu J, Soininen H (2011) Combining transcranial magnetic stimulation and electroencephalography may contribute to assess the severity of Alzheimer’s disease. Int J Alzheimers Dis 2011:654794

    PubMed  PubMed Central  Google Scholar 

  147. Attarian S, Azulay JP, Lardillier D, Verschueren A, Pouget J (2005) Transcranial magnetic stimulation in lower motor neuron diseases. Clin Neurophysiol 116:35–42

    CAS  PubMed  Google Scholar 

  148. Triggs WJ, Menkes D, Onorato J, Yan RS, Young MS, Newell K, Sander HW, Soto O, Chiappa KH, Cros D (1999) Transcranial magnetic stimulation identifies upper motor neuron involvement in motor neuron disease. Neurology 53:605–611

    CAS  PubMed  Google Scholar 

  149. Mills KR (2003) The natural history of central motor abnormalities in amyotrophic lateral sclerosis. Brain 126:2558–2566

    CAS  PubMed  Google Scholar 

  150. Khedr EM, Ahmed MA, Darwish ES, Ali AM (2011) The relationship between motor cortex excitability and severity of Alzheimer’s disease: a transcranial magnetic stimulation study. Neurophysiol Clin 41:107–113

    CAS  PubMed  Google Scholar 

  151. de Carvalho M, Scotto M, Lopes A, Swash M (2003) Clinical and neurophysiological evaluation of progression in amyotrophic lateral sclerosis. Muscle Nerve 28:630–633

    PubMed  Google Scholar 

  152. Jung P, Beyerle A, Humpich M, Neumann-Haefelin T, Lanfermann H, Ziemann U (2006) Ipsilateral silent period: a marker of callosal conduction abnormality in early relapsing-remitting multiple sclerosis? J Neurol Sci 250:133–139

    PubMed  Google Scholar 

  153. Caramia MD, Palmieri MG, Desiato MT, Boffa L, Galizia P, Rossini PM, Centonze D, Bernardi G (2004) Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clin Neurophysiol 115: 956–965

    PubMed  Google Scholar 

  154. Tassinari CA, Cincotta M, Zaccara G, Michelucci R (2003) Transcranial magnetic stimulation and epilepsy. Clin Neurophysiol 114:777–798

    PubMed  Google Scholar 

  155. Aguglia U, Gambardella A, Quartarone A, Girlanda P, Le Piane E, Messina D, Oliveri RL, Zappia M, Quattrone A (2000) Interhemispheric threshold differences in idiopathic generalized epilepsies with versive or circling seizures determined with focal magnetic transcranial stimulation. Epilepsy Res 40:1–6

    CAS  PubMed  Google Scholar 

  156. Delvaux V, Alagona G, Gerard P, De Pasqua V, Delwaide PJ, Maertens de Noordhout A (2001) Reduced excitability of the motor cortex in untreated patients with de novo idiopathic “grand mal” seizures. J Neurol Neurosurg Psychiatry 71:772–776

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Reutens DC, Berkovic SF, Macdonell RA, Bladin PF (1993) Magnetic stimulation of the brain in generalized epilepsy: reversal of cortical hyperexcitability by anticonvulsants. Ann Neurol 34:351–355

    CAS  PubMed  Google Scholar 

  158. Macdonell RA, King MA, Newton MR, Curatolo JM, Reutens DC, Berkovic SF (2001) Prolonged cortical silent period after transcranial magnetic stimulation in generalized epilepsy. Neurology 57:706–708

    CAS  PubMed  Google Scholar 

  159. Cincotta M, Borgheresi A, Benvenuti F, Liotta P, Marin E, Zaccara G (2002) Cortical silent period in two patients with meningioma and preoperative seizures: a pre- and postsurgical follow-up study. Clin Neurophysiol 113: 597–603

    PubMed  Google Scholar 

  160. Li X, Teneback CC, Nahas Z, Kozel FA, Large C, Cohn J, Bohning DE, George MS (2004) Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29:1395–1407

    CAS  PubMed  Google Scholar 

  161. Li X, Ricci R, Large CH, Anderson B, Nahas Z, Bohning DE, George MS (2010) Interleaved transcranial magnetic stimulation and fMRI suggests that lamotrigine and valproic acid have different effects on corticolimbic activity. Psychopharmacology (Berl) 209:233–244

    CAS  Google Scholar 

  162. Jackson SR, Parkinson A, Manfredi V, Millon G, Hollis C, Jackson GM (2013) Motor excitability is reduced prior to voluntary movements in children and adolescents with Tourette syndrome. J Neuropsychol 7(1):29–44

    PubMed  PubMed Central  Google Scholar 

  163. Bruckmann S, Hauk D, Roessner V, Resch F, Freitag CM, Kammer T, Ziemann U, Rothenberger A, Weisbrod M, Bender S (2012) Cortical inhibition in attention deficit hyperactivity disorder: new insights from the electroencephalographic response to transcranial magnetic stimulation. Brain 135(Pt 7): 2215–2230

    PubMed  Google Scholar 

  164. Vry J, Linder-Lucht M, Berweck S, Bonati U, Hodapp M, Uhl M, Faist M, Mall V (2008) Altered cortical inhibitory function in children with spastic diplegia: a TMS study. Exp Brain Res 186:611–618

    PubMed  Google Scholar 

  165. Garvey MA, Mall V (2008) Transcranial magnetic stimulation in children. Clin Neurophysiol 119:973–984

    PubMed  PubMed Central  Google Scholar 

  166. Heinen F, Fietzek UM, Berweck S, Hufschmidt A, Deuschl G, Korinthenberg R (1998) Fast corticospinal system and motor performance in children: conduction proceeds skill. Pediatr Neurol 19:217–221

    CAS  PubMed  Google Scholar 

  167. Bender S, Basseler K, Sebastian I, Resch F, Kammer T, Oelkers-Ax R, Weisbrod M (2005) Electroencephalographic response to transcranial magnetic stimulation in children: evidence for giant inhibitory potentials. Ann Neurol 58:58–67

    PubMed  Google Scholar 

  168. Fitzgerald PB, Brown TL, Daskalakis ZJ, Kulkarni J (2002) A transcranial magnetic stimulation study of inhibitory deficits in the motor cortex in patients with schizophrenia. Psychiatry Res 114:11–22

    PubMed  Google Scholar 

  169. Fitzgerald PB, Brown TL, Marston NA, Oxley T, De Castella A, Daskalakis ZJ, Kulkarni J (2004) Reduced plastic brain responses in schizophrenia: a transcranial magnetic stimulation study. Schizophr Res 71:17–26

    PubMed  Google Scholar 

  170. Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S (2002) Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatry 59:347–354

    PubMed  Google Scholar 

  171. Levinson AJ, Young LT, Fitzgerald PB, Daskalakis ZJ (2007) Cortical inhibitory dysfunction in bipolar disorder: a study using transcranial magnetic stimulation. J Clin Psychopharmacol 27:493–497

    PubMed  Google Scholar 

  172. Bajbouj M, Lisanby SH, Lang UE, Danker-Hopfe H, Heuser I, Neu P (2006) Evidence for impaired cortical inhibition in patients with unipolar major depression. Biol Psychiatry 59:395–400

    PubMed  Google Scholar 

  173. Richter MA, de Jesus DR, Hoppenbrouwers S, Daigle M, Deluce J, Ravindran LN, Fitzgerald PB, Daskalakis ZJ (2012) Evidence for cortical inhibitory and excitatory dysfunction in obsessive compulsive disorder. Neuropsychopharmacology 37: 1144–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Barnow S, Volker KA, Moller B, Freyberger HJ, Spitzer C, Grabe HJ, Daskalakis ZJ (2009) Neurophysiological correlates of borderline personality disorder: a transcranial magnetic stimulation study. Biol Psychiatry 65:313–318

    PubMed  Google Scholar 

  175. Salerno A, Thomas E, Olive P, Blotman F, Picot MC, Georgesco M (2000) Motor cortical dysfunction disclosed by single and double magnetic stimulation in patients with fibromyalgia. Clin Neurophysiol 111:994–1001

    CAS  PubMed  Google Scholar 

  176. Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen JP (2006) Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 67:1568–1574

    CAS  PubMed  Google Scholar 

  177. Oechsner M, Zangemeister WH (1999) Prolonged postexcitatory inhibition after transcranial magnetic stimulation of the motor cortex in patients with cerebellar ataxia. J Neurol Sci 168:107–111

    CAS  PubMed  Google Scholar 

  178. Tamburin S, Fiaschi A, Andreoli A, Marani S, Manganotti P, Zanette G (2004) Stimulus-response properties of motor system in patients with cerebellar ataxia. Clin Neurophysiol 115:348–355

    PubMed  Google Scholar 

  179. Teo JT, Schneider SA, Cheeran BJ, Fernandez-del-Olmo M, Giunti P, Rothwell JC, Bhatia KP (2008) Prolonged cortical silent period but normal sensorimotor plasticity in spinocerebellar ataxia 6. Mov Disord 23: 378–385

    PubMed  Google Scholar 

  180. Bertini M, Ferrara M, De Gennaro L, Curcio G, Fratello F, Romei V, Pauri F, Rossini PM (2004) Corticospinal excitability and sleep: a motor threshold assessment by transcranial magnetic stimulation after awakenings from REM and NREM sleep. J Sleep Res 13:31–36

    PubMed  Google Scholar 

  181. Kreuzer P, Langguth B, Popp R, Raster R, Busch V, Frank E, Hajak G, Landgrebe M (2011) Reduced intra-cortical inhibition after sleep deprivation: a transcranial magnetic stimulation study. Neurosci Lett 493:63–66

    CAS  PubMed  Google Scholar 

  182. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M (2009) Natural frequencies of human corticothalamic circuits. J Neurosci 29:7679–7685

    CAS  PubMed  Google Scholar 

  183. Verhagen L, Dijkerman HC, Medendorp WP, Toni I (2012) Cortical dynamics of sensorimotor integration during grasp planning. J Neurosci 32:4508–4519

    CAS  PubMed  Google Scholar 

  184. Kahkonen S, Wilenius J (2007) Effects of alcohol on TMS-evoked N100 responses. J Neurosci Methods 166:104–108

    CAS  PubMed  Google Scholar 

  185. Thut G, Pascual-Leone A (2010) A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr 22:219–232

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faranak Farzan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Farzan, F. (2014). Single-Pulse Transcranial Magnetic Stimulation (TMS) Protocols and Outcome Measures. In: Rotenberg, A., Horvath, J., Pascual-Leone, A. (eds) Transcranial Magnetic Stimulation. Neuromethods, vol 89. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0879-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0879-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0878-3

  • Online ISBN: 978-1-4939-0879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics