Skip to main content
  • 7128 Accesses

Abstract

We give a survey of the mathematical basis of inverse scattering theory, concentrating on the case of time-harmonic acoustic waves. After an introduction and historical remarks, we give an outline of the direct scattering problem. This is then followed by sections on uniqueness results in inverse scattering theory and iterative and decomposition methods to reconstruct the shape and material properties of the scattering object. We conclude by discussing qualitative methods in inverse scattering theory, in particular the linear sampling method and its use in obtaining lower bounds on the constitutive parameters of the scattering object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessandrini, G., Rondi, L.: Determining a sound–soft polyhedral scatterer by a single far–field measurement. Proc. Am. Math. Soc. 133, 1685–1691 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arens, T.: Why linear sampling works. Inverse Prob. 20, 163–173 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arens, T., Lechleiter, A.: The linear sampling method revisited. J. Integral Eqn. Appl. 21, 179–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bukhgeim, A.: Recovering a potential from Cauchy data in the two-dimensional case. J. Inverse Ill–Posed Prob. 16, 19–33 (2008)

    Google Scholar 

  5. Cakoni, F., Colton, D.: A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media. Proc. Edinb. Math. Soc. 46, 293–314 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cakoni, F., Colton, D.: The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 64, 709–723 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Cakoni, F., Colton, D., Haddar, H.: The computation of lower bounds for the norm of the index of refraction in anisotropic media from far field data. J. Integral Eqn. Appl. 21, 203–227 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cakoni, F., Colton, D., Haddar, H.: The interior transmission problem for regions with cavities. SIAM J. Math. Anal. 42, 145–162 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cakoni, F., Colton, D., Haddar, H.: On the determination of Dirichlet and transmission eigenvalues from far field data. Comput. Rend. Math. 348, 379–383 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cakoni, F., Colton, D., Monk, P.: The electromagnetic inverse scattering problem for partly coated Lipschitz domains. Proc. R. Soc. Edinb. 134A, 661–682 (2004)

    Article  MathSciNet  Google Scholar 

  12. Cakoni, F., Colton, D., Monk, P.: The Linear Sampling Method in Inverse Electromagnetic Scattering. SIAM.

    Google Scholar 

  13. Cakoni, F., Fares, M., Haddar, H.: Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects. Inverse Prob. 22, 845–867 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cakoni, F., Haddar, H.: A variational approach for the solution of the electro-magnetic interior transmission problem for anisotropic media. Inverse Prob. Imaging 1, 443–456 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 89, 29–47 (2010)

    Article  MathSciNet  Google Scholar 

  17. Colton, D., Haddar, H.: An application of the reciprocity gap functional to inverse scattering theory. Inverse Prob. 21, 383–398 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Colton, D., Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24, 719–731 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Prob. 12, 383–393 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Colton, D., Kirsch, A., Päivärinta, L.: Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20, 1472–1483 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Colton, D., Kress, R.: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55, 1724–1735 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  23. Colton, D., Kress, R.: On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Appl. Sci. 24, 1289–1303 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Colton, D., Monk, P.: A novel method for solving the inverse scattering problem for time harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 26, 506–523 (1986)

    Article  MathSciNet  Google Scholar 

  25. Colton, D., Monk, P.: The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math. 41, 97–125 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Colton, D., Monk, P.: Target identification of coated objects. IEEE Trans. Antennas Prop. 54, 1232–1242 (2006)

    Article  Google Scholar 

  27. Colton, D., Päivärinta, L.: The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch. Ration. Mech. Anal. 119, 59–70 (1992)

    Article  MATH  Google Scholar 

  28. Colton, D., Päivärinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imaging 1, 13–28 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Colton, D., Piana, M., Potthast, R.: A simple method using Mozorov’s discrepancy principle for solving inverse scattering problems. Inverse Prob. 13, 1477–1493 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Colton, D., Sleeman, B.: An approximation property of importance in inverse scattering theory. Proc. Edinburgh. Math. Soc. 44, 449–454 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Farhat, C., Tezaur, R., Djellouli, R.: On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method. Inverse Prob. 18, 1229–1246 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gintides, D.: Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality. Inverse Prob. 21, 1195–1205 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gylys–Colwell, F.: An inverse problem for the Helmholtz equation. Inverse Prob. 12, 139–156 (1996)

    Google Scholar 

  34. Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Prob. 18, 891–906 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hähner, P.: A periodic Faddeev–type solution operator. J. Diff. Eqn. 128, 300–308 (1996)

    Article  MATH  Google Scholar 

  36. Hähner, P.: On the uniqueness of the shape of a penetrable anisotropic obstacle. J. Comput. Appl. Math. 116, 167–180 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hähner, P.: Electromagnetic wave scattering. In: Pike, R., Sabatier, P. (eds.) Scattering. Academic, New York (2002)

    Google Scholar 

  38. Harbrecht, H., Hohage, T.: Fast methods for three-dimensional inverse obstacle scattering problems. J. Integral Eqn. Appl. 19, 237–260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Hohage, T.: Iterative methods in inverse obstacle scattering: regularization theory of linear and nonlinear exponentially ill-posed problems. Dissertation, Linz (1999)

    Google Scholar 

  40. Isakov, V.: On the uniqueness in the inverse transmission scattering problem. Commun. Partial Diff. Eqns. 15, 1565–1587 (1988)

    Article  MathSciNet  Google Scholar 

  41. Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, Berlin (1996)

    Google Scholar 

  42. Ivanyshyn, O.: Nonlinear boundary integral equations in inverse scattering. Dissertation, Gäottingen (2007)

    Google Scholar 

  43. Ivanyshyn, O., Kress, R.: Nonlinear integral equations in inverse obstacle scattering. In: Fotiatis M (ed) Mathematical Methods in Scattering Theory and Biomedical Engineering. World Scientific, Singapore, pp. 39–50 (2006)

    Google Scholar 

  44. Ivanyshyn, O., Kress, R.: Identification of sound-soft 3D obstacles from phaseless data. Inverse Prob. Imaging 4, 131–149 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Johansson, T., Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern. IMA J. Appl. Math. 72, 96–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  46. Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon, Oxford (1986)

    Google Scholar 

  47. Kirsch, A.: The domain derivative and two applications in inverse scattering. Inverse Prob. 9, 81–86 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Prob. 14, 1489–1512 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kirsch, A.: Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Prob. 15, 413–429 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  50. Kirsch, A.: An integral equation approach and the interior transmission problem for Maxwell’s equations. Inverse Prob. Imaging 1, 159–179 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Kirsch, A.: On the existence of transmission eigenvalues. Inverse Prob. Imaging 3, 155–172 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  52. Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  53. Kirsch, A., Kress, R.: An optimization method in inverse acoustic scattering. In: Brebbia, C.A. et al. (eds.) Boundary Elements IX. Fluid Flow and Potential Applications, vol. 3. Springer, Berlin (1987)

    Google Scholar 

  54. Kirsch, A., Kress, R.: Uniqueness in inverse obstacle scattering. Inverse Prob. 9, 285–299 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  55. Kleinman, R., van den Berg, P.: A modified gradient method for two dimensional problems in tomography. J. Comput. Appl. Math. 42, 17–35 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  56. Kress, R.: Electromagnetic waves scattering. In: Pike, R., Sabatier, P. (eds.) Scattering. Academic, New York (2002)

    Google Scholar 

  57. Kress, R.: Newton’s Method for inverse obstacle scattering meets the method of least squares. Inverse Prob. 19, 91–104 (2003)

    Article  MathSciNet  Google Scholar 

  58. Kress, R., Rundell, W.: Inverse scattering for shape and impedance. Inverse Prob. 17, 1075–1085 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  59. Kress, R., Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Prob. 21, 1207–1223 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  60. Langenberg, K.: Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Sabatier, P. (ed.) Basic Methods of Tomography and Inverse Problems. Adam Hilger, Bristol (1987)

    Google Scholar 

  61. Lax, P.D., Phillips, R.S.: Scattering Theory. Academic, New York (1967)

    MATH  Google Scholar 

  62. Liu, H.: A global uniqueness for formally determined electromagnetic obstacle scattering. Inverse Prob. 24, 035018 (2008)

    Article  Google Scholar 

  63. Liu, H., Zou, J.: Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Prob. 22, 515–524 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  64. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  65. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  66. Morse, P.M., Ingard, K.U.: Linear acoustic theory. In: Faugge, S. (ed.) Encyclopedia of Physics. Springer, Berlin (1961)

    Google Scholar 

  67. Mäuller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)

    Book  Google Scholar 

  68. Nachman, A.: Reconstructions from boundary measurements. Ann. Math. 128, 531–576 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  69. Nédélec, J.C.: Acoustic and Electromagnetic Equations. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  70. Novikov, R.: Multidimensional inverse spectral problems for the equation \(-\Delta \psi +\) \(\left (v(x)-\right.\) \(\left.Eu(x)\right )\psi = 0\). Trans. Funct. Anal. Appl. 22, 263–272 (1988)

    Google Scholar 

  71. Ola, P., Päivärinta, L., Somersalo, E.: An inverse boundary value problem in electrodynamics. Duke Math. J. 70, 617–653 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  72. Ola, P., Somersalo, E.: Electromagnetic inverse problems and generalized Sommerfeld potentials. SIAM J. Appl. Math. 56, 1129–1145 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  73. Päivärinta, L., Sylvester, J.: Transmission eigenvalues. SIAM J. Math. Anal. 40, 738–753 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  74. Piana, M.: On uniqueness for anisotropic inhomogeneous inverse scattering problems. Inverse Prob. 14, 1565–1579 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  75. Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Prob. 10, 431–447 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  76. Potthast, R.: Point-Sources and Multipoles in Inverse Scattering Theory. Chapman and Hall, London (2001)

    Book  MATH  Google Scholar 

  77. Potthast, R.: On the convergence of a new Newton-type method in inverse scattering. Inverse Prob. 17, 1419–1434 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  78. Potthast, R.: A survey on sampling and probe methods for inverse problems. Inverse Prob. 22, R1–R47 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  79. Ramm, A.: Recovery of the potential from fixed energy scattering data. Inverse Prob. 4, 877–886 (1988)

    Article  MATH  Google Scholar 

  80. Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Berlin (2007)

    MATH  Google Scholar 

  81. Roger, R.: Newton Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans. Antennas Prop. 29, 232–238 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  82. Rondi, L.: Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements. Indiana Univ. Math. J. 52, 1631–1662 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  83. Rynne, B.P., Sleeman, B.D.: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755–1762 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  84. Serranho, P.: A hybrid method for inverse scattering for shape and impedance. Inverse Prob. 22, 663–680 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  85. Serranho, P.: A hybrid method for inverse obstacle scattering problems. Dissertation, Gäottingen (2007)

    Google Scholar 

  86. Serranho, P.: A hybrid method for sound-soft obstacles in 3D. Inverse Prob. Imaging 1, 691–712 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  87. Stefanov, P., Uhlmann, G.: Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Am. Math. Soc. 132, 1351–1354 (2003)

    Article  MathSciNet  Google Scholar 

  88. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  89. van den Berg, R., Kleinman, R.: A contrast source inversion method. Inverse Prob. 13, 1607–1620 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Colton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Colton, D., Kress, R. (2015). Inverse Scattering. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_48

Download citation

Publish with us

Policies and ethics