Skip to main content

Mathematical Methods of Optical Coherence Tomography

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

In this chapter a general mathematical model of Optical Coherence Tomography (OCT) is presented on the basis of the electromagnetic theory. OCT produces high-resolution images of the inner structure of biological tissues. Images are obtained by measuring the time delay and the intensity of the backscattered light from the sample considering also the coherence properties of light. The scattering problem is considered for a weakly scattering medium located far enough from the detector. The inverse problem is to reconstruct the susceptibility of the medium given the measurements for different positions of the mirror. Different approaches are addressed depending on the different assumptions made about the optical properties of the sample. This procedure is applied to a full field OCT system and an extension to standard (time and frequency domain) OCT is briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ammari, H., Bao, G.: Analysis of the scattering map of a linearized inverse medium problem for electromagnetic waves. Inverse Prob. 17, 219–234 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersen, P.E., Thrane, L., Yura, H.T., Tycho, A., Jørgensen, T.M., Frosz, M.H.: Advanced modelling of optical coherence tomography systems. Phys. Med. Biol. 49, 1307–1327 (2004)

    Article  Google Scholar 

  3. Born, M., Wolf, E.: Principles of Optics. 7th Edn. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  4. Bouma, B.E., Tearney, G.J.: Handbook of Optical Coherence Tomography. Marcel Dekker Inc., New York (2002)

    Google Scholar 

  5. Brezinski, M.E.: Optical Coherence Tomography Principles and Applications. Academic Press, New York (2006)

    Google Scholar 

  6. Brodsky, A., Thurber, S.R., Burgess, L.W.: Low-coherence interferometry in random media. i. theory. J. Opt. Soc. Am. A 17(11), 2024–2033 (2000)

    Google Scholar 

  7. Bruno, O., Chaubell, J.: One-dimensional inverse scattering problem for optical coherence tomography. Inverse Prob. 21, 499–524 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edn, In: Applied Mathematical Sciences, vol. 93. Springer, Berlin (1998)

    Google Scholar 

  9. Dolin, L.S.: A theory of optical coherence tomography. Radiophys. Quantum Electron. 41(10), 850–873 (1998)

    Article  MathSciNet  Google Scholar 

  10. Drexler, W., Fujimoto, J.G.: Optical Coherence Tomography. Springer, Berlin (2008)

    Book  Google Scholar 

  11. Duan, L., Makita, S., Yamanari, M., Lim, Y., Yasuno, Y.: Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography. Opt. Express 19, 16330–16345 (2011)

    Article  Google Scholar 

  12. Feng, Y., Wang, R.K., Elder, J.B.: Theoretical model of optical coherence tomography for system optimization and characterization. J. Opt. Soc. Am. A 20(9), 1792–1803 (2003)

    Article  Google Scholar 

  13. Fercher, A.F.: Optical coherence tomography. J. Biomed. Opt. 1(2), 157–173 (1996)

    Article  Google Scholar 

  14. Fercher, A.F.: Optical coherence tomography - development, principles, applications. Z. Med. Phys. 20, 251–276 (2010)

    Article  Google Scholar 

  15. Fercher, A.F., Hitzenberger, C.K.: Optical Coherence Tomography. In: Progress in Optics. Elsevier Science B. V., Amsterdam (2002)

    Google Scholar 

  16. Fercher, A.F., Drexler, W., Hitzenberger, C.K., Lasser, T.: Optical coherence tomography - principles and applications. Rep. Prog. Phys. 66(2), 239–303 (2003)

    Article  Google Scholar 

  17. Fercher, A.F., Hitzenberger, C.K., Drexler, W., Kamp, G., Sattmann, H.: In vivo optical coherence tomography. Am. J. Ophthalmol. 116, 113–114 (1993)

    Article  Google Scholar 

  18. Fercher, A.F., Hitzenberger, C.K., Kamp, G., El Zaiat, S.Y.: Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  Google Scholar 

  19. Fercher, A.F., Sander, B., Jørgensen, T.M., Andersen, P.E.: Optical Coherence Tomography. In: Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd., Chichester (2009)

    Google Scholar 

  20. Friberg, A.T., Wolf, E.: Angular spectrum representation of scattered electromagnetic fields. J. Opt. Soc. Am. 73(1), 26–32 (1983)

    Article  MathSciNet  Google Scholar 

  21. Hecht, E.: Optics. 4th edn. Addison Wesley, San Francisco (2002)

    Google Scholar 

  22. Hellmuth, T.: Contrast and resolution in optical coherence tomography. In: Bigio, I.J., Grundfest, W.S., Schneckenburger, H., Svanberg K., Viallet P.M., (eds.) Optical Biopsies and Microscopic Techniques. Proceedings of SPIE, vol 2926, pp 228–237 (1997)

    Chapter  Google Scholar 

  23. Hohage, T.: Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. J. Comput. Phys. 214, 224–238 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., Fujimoto, J.G.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  Google Scholar 

  25. Izatt, J.A., Choma, M.A.: Theory of optical coherence tomography. In: Drexler, W., Fujimoto, J.G. (eds.) In: Optical Coherence Tomography, pp. 47–72. Springer, Berlin (2008)

    Chapter  Google Scholar 

  26. Kirillin, M., Meglinski, I., Kuzmin, V., Sergeeva, E., Myllylä, R.: Simulation of optical coherence tomography images by monte carlo modeling based on polarization vector approach. Opt. Express 18(21), 21714–21724 (2010)

    Article  Google Scholar 

  27. Knüttel, A., Schork, R., Böcker, D.: Analytical modeling of spatial resolution curves in turbid media acquired with optical coherence tomography (oct). In: Cogwell, C.J., Kino, G.S., Wilson, T. (eds.) Three- Dimensional Microscopy: Image Acquisition and Processing III, Proceedings of SPIE, vol 2655, pp. 258–270 (1996)

    Chapter  Google Scholar 

  28. Marks, D.L., Davis, B.J., Boppart, S.A., Carney, P.S.: Partially coherent illumination in full-field interferometric synthetic aperture microscopy. J. Opt. Soc. Am. A 26(2), 376–386 (2009)

    Article  Google Scholar 

  29. Marks, D.L., Ralston, T.S., Boppart, S.A., Carney, P.S.: Inverse scattering for frequency-scanned full-field optical coherence tomography. J. Opt. Soc. Am. A 24(4), 1034–1041 (2007)

    Article  MathSciNet  Google Scholar 

  30. Orfanidis, S.J.: Electromagnetic Waves and Antennas. Rutgers University Press, NJ (2002)

    Google Scholar 

  31. Pan, Y., Birngruber, R., Rosperich, J., Engelhardt, R.: Low-coherence optical tomography in turbid tissue: theoretical analysis. App. Opt. 34(28), 6564–6574 (1995)

    Article  Google Scholar 

  32. Podoleanu, A.G.: Optical coherence tomography. Br. J. Radiol. 78, 976–988 (2005)

    Article  Google Scholar 

  33. Potthast, R.: Integral equation methods in electromagnetic scattering from anisotropic media. Math. Methods Appl. Sci. 23, 1145–1159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ralston, T.S.: Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. IEEE Trans. Image Process. 14(9), 1254–1264 (2005)

    Article  Google Scholar 

  35. Ralston, T.S., Marks, D.L., Carney, P.S., Boppart, S.A.: Inverse scattering for optical coherence tomography. J. Opt. Soc. Am. A 23(5), 1027–1037 (2006)

    Article  Google Scholar 

  36. Schmitt, J.M.: Optical coherence tomography (OCT): A review. IEEE J. Quantum Electron. 5, 1205–1215 (1999)

    Article  Google Scholar 

  37. Schmitt, J.M., Knüttel, A.: Model of optical coherence tomography of heterogeneous tissue. J. Opt. Soc. Am. A 14(6), 1231–1242 (1997)

    Article  Google Scholar 

  38. Schmitt, J.M., Knüttel, A., Bonner, R.F.: Measurement of optical properties of biological tissues by low-coherence reflectometry. Appl. Opt. 32, 6032–6042 (1993)

    Article  Google Scholar 

  39. Schmitt, J.M., Xiang, S.H., Yung, K.M.: Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Amer. A 15, 2288–2296 (1998)

    Article  Google Scholar 

  40. Smithies, D.J., Lindmo, T., Chen, Z., Nelson, J.S., Milner, T.E.: Signal attenuation and localization in optical coherence tomography studied by monte carlo simulation. Phys. Med. Biol. 43, 3025–3044 (1998)

    Article  Google Scholar 

  41. Swanson, E.A., Izatt, J.A., Hee, M.R., Huang, D., Lin, C.P., Schuman, J.S., Puliafito, C.A., Fujimoto, J.G.: In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993)

    Article  Google Scholar 

  42. Thomsen, J.B., Sander, B., Mogensen, M., Thrane, L., Jørgensen, T.M., Martini, T., Jemec, G.B.E., Andersen, P.E.: Optical coherence tomography: Technique and applications. In: Advanced Imaging in Biology and Medicine, pp. 103–129. Springer, Berlin (2009)

    Google Scholar 

  43. Thrane, L., Yura, H.T., Andersen, P.E.: Analysis of optical coherence tomography systems based on the extended huygens - fresnel principle. J. Opt. Soc. Am. A 17(3), 484–490 (2000)

    Article  MathSciNet  Google Scholar 

  44. Tomlins, P.H., Wang, R.K.: Theory, developments and applications of optical coherence tomography. J. Phys. D: Appl. Phys. 38, 2519–2535 (2005)

    Article  Google Scholar 

  45. Turchin, I.V., Sergeeva, E.A., Dolin, L.S., Kamensky, V.A., Shakhova, N.M., Richards Kortum, R.: Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies. J. Biomed. Opt. 10(6) 064024, (2005)

    Article  Google Scholar 

  46. Xu, C., Marks, D.L., Do, M.N., Boppart, S.A.: Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm. Opt. Express 12(20), 4790–4803 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Wolfgang Drexler and Boris Hermann from the Medical University Vienna for their valuable comments and stimulating discussions. This work has been supported by the Austrian Science Fund (FWF) within the national research network Photoacoustic Imaging in Biology and Medicine, projects S10501-N20 and S10505-N20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Elbau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Elbau, P., Mindrinos, L., Scherzer, O. (2015). Mathematical Methods of Optical Coherence Tomography. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_44

Download citation

Publish with us

Policies and ethics