Skip to main content

Abstract

Motions of physical objects relative to a camera as observer naturally occur in everyday lives and in many scientific applications. Optical flow represents the corresponding motion induced on the image plane. This paper describes the basic problems and concepts related to optical flow estimation together with mathematical models and computational approaches to solve them. Emphasis is placed on common and different modeling aspects and to relevant research directions from a broader perspective. The state of the art and corresponding deficiencies are reported along with directions of future research. The presentation aims at providing an accessible guide for practitioners as well as stimulating research work in relevant fields of mathematics and computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margarey, J., Kingsbury, N.: Motion estimation using a complex-valued wavelet transform. IEEE Trans. Signal Process. 46(4), 1069–1084 (1998)

    MathSciNet  Google Scholar 

  2. Bernard, C.: Discrete wavelet analysis for fast optic flow computation. Appl. Comput. Harmon. Anal. 11, 32–63 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Google Scholar 

  4. Bay, H., Ess, A., Tuytelaars, T., Ban Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Google Scholar 

  5. Brown, M., Burschka, D., Hager, G.: Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 993–1008 (2003)

    Google Scholar 

  6. Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Sabater, S., Almansa, A., Morel, J.: Meaningful matches in stereovision. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 930–942 (2012)

    Google Scholar 

  8. Black, M., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

    Google Scholar 

  9. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  10. Rockafellar, R., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer, Berlin/New York (2009)

    MATH  Google Scholar 

  11. Sun, D., Roth, S., Black, M.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2013)

    Google Scholar 

  12. Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int. J. Comput. Vis. 70(3), 257–277 (2006)

    Google Scholar 

  13. Gwosdek, P., Bruhn, A., Weickert, J.: Variational optic flow on the Sony Playstation 3 – accurate dense flow fields for real-time applications. J. Real-Time Image Process. 5(3),163–177 (2010)

    Google Scholar 

  14. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Faugeras, O., Luong, Q.T.: The Geometry of Multiple Images. MIT, Cambridge/London (2001)

    MATH  Google Scholar 

  16. Longuet-Higgins, H., Prazdny, K.: The interpretation of a moving retinal image. Proc. R. Soc. Lond. B 208, 385–397 (1980)

    Google Scholar 

  17. Prazdny, K.: Egomotion and relative depth map from optical flow. Biol. Cybern. 36, 87–102 (1980)

    MATH  MathSciNet  Google Scholar 

  18. Kanatani, K.: Transformation of optical flow by camera rotation. IEEE Trans. Pattern Anal. Mach. Intell. 10(2), 131–143 (1988)

    Google Scholar 

  19. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the IJCAI, Vancouver, vol. 2, pp. 674–679 (1981)

    Google Scholar 

  20. Nagel, H.H.: Constraints for the estimation of displacement vector fields from image sequences. In: Proceedings of the International Joint Conference on Artificial Intelligence, Karlsruhe, pp. 945–951 (1983)

    Google Scholar 

  21. Hildreth, E.: The computation of the velocity field. Proc. R. Soc. B 221, 189–220 (1984)

    Google Scholar 

  22. Werkhoven, P., Toet, A., Koenderink, J.: Displacement estimates through adaptive affinities. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 658–663 (1990)

    Google Scholar 

  23. Werkhoven, P., Koenderink, J.: Extraction of motion parallax structure in the visual system I. Biol. Cybern. 83, 185–191 (1990)

    MathSciNet  Google Scholar 

  24. Werkhoven, P., Koenderink, J.: Extraction of motion parallax structure in the visual system II. Biol. Cybern. 63, 193–199 (1990)

    MATH  MathSciNet  Google Scholar 

  25. Verri, A., Poggio, T.: Motion field and optical flow: qualitative properties. IEEE Trans. Pattern Anal. Mach. Intell. 11(5), 490–498 (1989)

    Google Scholar 

  26. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2(2), 284–299 (1985)

    Google Scholar 

  27. Heeger, D.: Optical flow using spatiotemporal filters. Int. J. Comput. Vis. 1(4), 279–302 (1988)

    Google Scholar 

  28. Fleet, D., Jepson, A.: Computation of component image velocity from local phase information. Int. J. Comput. Vis. 5(1), 77–104 (1990)

    Google Scholar 

  29. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Google Scholar 

  30. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 565–593 (1986)

    Google Scholar 

  31. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vis. 2, 283–310 (1989)

    Google Scholar 

  32. Yuille, A., Grzywacz, N.: A mathematical analysis of the motion coherence theory. Int. J. Comput. Vis. 3, 155–175 (1989)

    Google Scholar 

  33. Schnörr, C.: Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. Int. J. Comput. Vis. 6(1), 25–38 (1991)

    Google Scholar 

  34. Hinterberger, W., Scherzer, O., Schnörr, C., Weickert, J.: Analysis of optical flow models in the framework of calculus of variations. Numer. Funct. Anal. Optim. 23(1/2), 69–89 (2002)

    MATH  MathSciNet  Google Scholar 

  35. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14(3), 245–255 (2001)

    MATH  Google Scholar 

  36. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE–based computation of image motion. Int. J. Comput. Vis. 45(3), 245–264 (2001)

    MATH  Google Scholar 

  37. Wang, J., Adelson, E.: Representing moving images with layers. IEEE Trans. Image Process. 3(5), 625–638 (1994)

    Google Scholar 

  38. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9(2), 137–154 (1992)

    Google Scholar 

  39. Schnörr, C.: Computation of discontinuous optical flow by domain decomposition and shape optimization. Int. J. Comput. Vis. 8(2), 153–165 (1992)

    Google Scholar 

  40. Heitz, F., Bouthemy, P.: Multimodal estimation of discontinuous optical flow using Markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1217–1231 (1993)

    Google Scholar 

  41. Barron, J.L., Fleet, D., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Google Scholar 

  42. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Google Scholar 

  43. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)

    Google Scholar 

  44. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., et al. (eds.) Proceedings of the ECCV, Part IV, Florence. LNCS vol. 7577, pp. 611–625. Springer (2012)

    Google Scholar 

  45. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  46. Schnörr, C.: On functionals with greyvalue-controlled smoothness terms for determining optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1074–1079 (1993)

    Google Scholar 

  47. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

    Google Scholar 

  48. Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. J. Math. Image Vis. 28, 67–80 (2007)

    Google Scholar 

  49. Yuan, J., Schnörr, C., Steidl, G.: Simultaneous optical flow estimation and decomposition. SIAM J. Sci. Comput. 29(6), 2283–2304 (2007)

    MATH  MathSciNet  Google Scholar 

  50. Yuan, J., Schnörr, C., Steidl, G.: Convex Hodge decomposition and regularization of image flows. J. Math. Imaging Vis. 33(2), 169–177 (2009)

    MATH  Google Scholar 

  51. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: Proceedings of the BMVC, London (2009)

    Google Scholar 

  52. Krähenbühl, P., Koltun, V.: Efficient nonlocal regularization for optical flow. In: Fitzgibbon, A.W., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Proceedings of the ECCV, Florence, LNCS, vol. 7572, pp. 356–369. Springer (2012)

    Google Scholar 

  53. Kindermann, S., Osher, S., Jones, P.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005)

    MATH  MathSciNet  Google Scholar 

  54. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    MATH  MathSciNet  Google Scholar 

  55. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17(7), 1047–1059 (2008)

    MathSciNet  Google Scholar 

  56. Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for optical flow. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) Proceedings of the ICCV, Barcelona, pp. 1116–1123. IEEE (2011)

    Google Scholar 

  57. Becker, F., Lenzen, F., Kappes, J.H., Schnörr, C.: Variational recursive joint estimation of dense scene structure and camera motion from monocular high speed traffic sequences. Int. J. Comput. Vis. 105, 269–297 (2013)

    MATH  MathSciNet  Google Scholar 

  58. Slesareva, N., Bruhn, A., Weickert, J.: Optic flow goes stereo: a variational method for estimating discontinuity preserving dense disparity maps. In: Proceedings of the 27th DAGM Symposium, Vienna, pp. 33–40 (2005)

    Google Scholar 

  59. Valgaerts, L., Bruhn, A., Mainberger, M., Weickert, J.: Dense versus sparse approaches for estimating the fundamental matrix. Int. J. Comput. Vis. 96(2), 212–234 (2012)

    MATH  MathSciNet  Google Scholar 

  60. Adrian, R.J., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press, Cambridge/New York (2011)

    Google Scholar 

  61. Arnaud, E., Mémin, E., Sosa, R., Artana, G.: A fluid motion estimator for Schlieren image velocimetry. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Proceedings of the ECCV, Graz. LNCS, vol. 3951, pp. 198–210. Springer (2006)

    Google Scholar 

  62. Westerweel, J.: Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8, 1379–1392 (1998)

    Google Scholar 

  63. Ruhnau, P., Gütter, C., Putze, T., Schnörr, C.: A variational approach for particle tracking velocimetry. Meas. Sci. Technol. 16, 1449–1458 (2005)

    Google Scholar 

  64. Ruhnau, P., Kohlberger, T., Nobach, H., Schnörr, C.: Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38, 21–32 (2005)

    Google Scholar 

  65. Heitz, D., Mémin, E., Schnörr, C.: Variational fluid flow measurements from image Sequences: synopsis and perspectives. Exp. Fluids 48(3), 369–393 (2010)

    Google Scholar 

  66. Vlasenko, A., Schnörr, C.: Physically consistent and efficient variational denoising of image fluid flow estimates. IEEE Trans. Image Process. 19(3), 586–595 (2010)

    MathSciNet  Google Scholar 

  67. Ruhnau, P., Schnörr, C.: Optical Stokes flow estimation: an imaging-based control approach. Exp. Fluids 42, 61–78 (2007)

    Google Scholar 

  68. Ruhnau, P., Stahl, A., Schnörr, C.: Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas. Sci. Technol. 18, 755–763 (2007)

    Google Scholar 

  69. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin/New York (1986)

    MATH  Google Scholar 

  70. Gunzburger, M.: Perspectives in Flow Control and Optimization. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  71. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advances in Design and Control, vol. 15. SIAM, Philadelphia (2008)

    Google Scholar 

  72. Gunzburger, M., Manservisi, S.: Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37(5), 1481–1512 (2000)

    MATH  MathSciNet  Google Scholar 

  73. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    MATH  MathSciNet  Google Scholar 

  74. Briggs, W., Henson, V., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  75. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Variational optic flow computation in real-time. IEEE Trans. Image Process. 14(5), 608–615 (2005)

    MathSciNet  Google Scholar 

  76. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic, San Diego (2001)

    MATH  Google Scholar 

  77. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. 4(1), 1–106 (2012)

    Google Scholar 

  78. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    MATH  Google Scholar 

  79. Combettes, P., Pesquet, J.C.: Proximal splitting methods in signal Processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York (2010)

    Google Scholar 

  80. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 1–108 (2013)

    Google Scholar 

  81. Horst, R., Thoai, N.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)

    MathSciNet  Google Scholar 

  82. Hoai An, L., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world Nonconvex optimization Problems. Ann. Oper. Res. 133, 23–46 (2005)

    MATH  MathSciNet  Google Scholar 

  83. Steinbrücker, F., Pock, T., Cremers, D.: Advanced data terms for variational optic flow estimation. In: Magnor, M.A., Rosenhahn, B., Theisel, H. (eds.) Proceedings Vision, Modeling and Visualization (VMV), Braunschweig, pp. 155–164. DNB (2009)

    Google Scholar 

  84. Hafner, D., Demetz, O., Weickert, J.: Why is the census transform good for robust optic flow computation? In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) Proceedings of the SSVM, Leibnitz. LNCS, vol. 7893, pp. 210–221. Springer (2013)

    Google Scholar 

  85. Viola, P., Wells, W.M. III: Alignment by maximization of mutual information. Int. J. Comput. Vis. 24(2), 137–154 (1997)

    Google Scholar 

  86. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Google Scholar 

  87. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  88. Parzen, E.: On the estimation of a probability density function and the mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    MATH  MathSciNet  Google Scholar 

  89. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. In: Proceedings of the ICCV, Nice (2003)

    Google Scholar 

  90. Wainwright, M., Jordan, M.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

    MATH  Google Scholar 

  91. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT, Cambridge (2009)

    Google Scholar 

  92. Kappes, J., Andres, B., Hamprecht, F., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B., Lellmann, J., Komodakis, N., Rother, C.: A comparative study of modern inference techniques for discrete energy minimization problem. In: Proceedings of the CVPR, Portland (2013)

    Google Scholar 

  93. Savchynskyy, B., Kappes, J., Swoboda, P., Schnörr, C.: Global MAP-optimality by shrinking the combinatorial search area with convex relaxation. In: Proceedings of the NIPS, Lake Tahoe (2013)

    Google Scholar 

  94. Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., Navab, N.: Optical flow estimation with uncertainties through dynamic MRFs. In: Proceedings of the CVPR, Anchorage (2008)

    Google Scholar 

  95. Mozerov, M.: Constrained optical flow estimation as a matching problem. IEEE Trans. Image Process. 22(5), 2044–2055 (2013)

    MathSciNet  Google Scholar 

  96. Yamaguchi, K., McAllester, D., Urtasun, R.: Robust monocular epipolar flow estimation. In: Proceedings of the CVPR, Portland (2013)

    Google Scholar 

  97. Younes, L., Arrate, F., Miller, M.: Evolution equations in computational anatomy. NeuoImage 45(1, Suppl. 1), S40–S50 (2009)

    Google Scholar 

  98. Dupuis, P., Grenander, U., Miller, M.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587–600 (1998)

    MATH  MathSciNet  Google Scholar 

  99. Beg, M., Miller, M., Trouv’e, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Google Scholar 

  100. Younes, L.: Shapes and Diffeomorphisms. Applied Mathematical Sciences, vol. 171. Springer, Heidelberg/New York (2010)

    Google Scholar 

  101. Whaba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)

    Google Scholar 

  102. Buhmann, M.: Radial Basis Functions. Cambridge University Press, Cambridge/New York (2003)

    MATH  Google Scholar 

  103. Rohr, K.: Landmark-Based Image Analysis. Kluwer Academic, Dordrecht/Boston (2001)

    MATH  Google Scholar 

  104. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford/New York (2004)

    MATH  Google Scholar 

  105. Glaunès, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80(3), 317–336 (2008)

    Google Scholar 

  106. Sommer, S., Lauze, F., Nielsen, M., Pennec, X.: Sparse multi-scale diffeomorphic registration: the kernel bundle framework. J. Math. Imaging Vis. 46(3), 292–308 (2013)

    MATH  MathSciNet  Google Scholar 

  107. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)

    Google Scholar 

  108. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Modeling and Optimisation of Flows on Networks, Cetraro Lecture Notes in Mathematics, vol. 2062, pp. 1–155. Springer (2013)

    Google Scholar 

  109. Korte, B., Vygen, J.: Combinatorial Optimization, 4th edn. Springer, Berlin (2008)

    Google Scholar 

  110. Schmitzer, B., Schnörr, C.: Modelling convex shape priors and matching based on the Gromov-Wasserstein distance. J. Math. Imaging Vis. 46(1), 143–159 (2013)

    MATH  Google Scholar 

  111. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    MATH  MathSciNet  Google Scholar 

  112. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Analysis Mach. Intell. 24(24), 509–522 (2002)

    Google Scholar 

  113. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12, 731–741 (2008)

    Google Scholar 

  114. Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the Monge–Kantorovich problem. SIAM J. Math. Anal. 35(1), 61–97 (2003)

    MATH  MathSciNet  Google Scholar 

  115. Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: A continuum mechanical approach to geodesics in shape space. Int. J. Comput. Vis. 93(3), 293–318 (2011)

    MATH  MathSciNet  Google Scholar 

  116. Mémoli, F.: Gromov-Wasserstein distances and the metric approach to object matching. Found. Comput. Math. 11, 417–487 (2011)

    MATH  MathSciNet  Google Scholar 

  117. Schmitzer, B., Schnörr, C.: Object segmentation by shape matching with Wasserstein Modes. In: Proceedings of the EMMCVPR, Lund. Springer (2013)

    Google Scholar 

  118. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    MATH  Google Scholar 

  119. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    MATH  MathSciNet  Google Scholar 

  120. He, J., Balzano, L., Szlam, A.: Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In: Proceedings of the CVPR, Providence (2012)

    Google Scholar 

  121. Belhumeur, P., Kriegman, D.: What is the set of images of an object under all possible illumination conditions? Int. J. Comput. Vis. 28(3), 245–260 (1998)

    Google Scholar 

  122. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)

    Google Scholar 

  123. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton/Woodstock (2008)

    MATH  Google Scholar 

  124. Candés, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), Article no. 11 (2011)

    MathSciNet  Google Scholar 

  125. Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detection with optical flows. Int. J. Comput. Vis. 97(3), 322–338 (2012)

    MATH  MathSciNet  Google Scholar 

  126. Irani, M.: Multi-frame correspondence estimation using subspace constraints. Int. J. Comput. Vis. 48(3), 173–194 (2002)

    MATH  MathSciNet  Google Scholar 

  127. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Google Scholar 

  128. Aldroubi, A.: The subspace segmentation problem, nonlinear approximations and applications. ISRN Signal Proc. Art.(417492), 13p (2013)

    Google Scholar 

  129. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Google Scholar 

  130. Lu, Y., Do, M.: A theory for samping signals from a union of subspaces. IEEE Trans. Signal Process. 56(6), 2334–2345 (2008)

    MathSciNet  Google Scholar 

  131. Carin, L., Baraniuk, R., Cevher, V., Dunson, V., Jordan, M., Sapiro, G., Wakin, M.: Learning low-dimensional signal models. IEEE Signal Process. Mag. 28(2), 39–51 (2011)

    Google Scholar 

  132. Blumensath, T.: Sampling and reconstructing signals from a union of linear subspaces. IEEE Trans. Inf. Theory 57(7), 4660–4671 (2011)

    MathSciNet  Google Scholar 

  133. Turaga, P., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2286 (2011)

    Google Scholar 

  134. Hjort, N., Holmes, C., Müller, P., Walker, S. (eds.): Bayesian Nonparametrics. Cambridge University Press, Cambridge/New York (2010)

    MATH  Google Scholar 

  135. Cressie, N., Wikle, C.: Statistics for Spatio-Temporal Data. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  136. Héas, P., Herzet, C., Mémin, E.: Bayesian inference of models and hyperparameters for robust optical-flow estimation. IEEE Trans. Image Process. 21(4), 1437–1451 (2012)

    MathSciNet  Google Scholar 

  137. MacKay, D.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)

    Google Scholar 

  138. Tierney, L., Kadane, J.: Accurate approximations for posterior moments and marginal densities. J. Am. Math. Soc. 81(393), 82–86 (1986)

    MATH  MathSciNet  Google Scholar 

  139. Kass, R., Tierney, L., Kadane, J.: The validity of posterior expansions based on Laplace’s method. In: Barnard, G.A., Geisser, S. (eds.) Bayesian and Likelihood Methods in Statistics and Econometrics, pp. 473–488. Elsevier Science, New York (1990)

    Google Scholar 

  140. Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71(2), 319–392 (2009)

    MATH  MathSciNet  Google Scholar 

  141. Artana, G., Cammilleri, A., Carlier, J., Mémin, E.: Strong and weak constraint variational assimilations for reduced order fluid flow modeling. J. Comput. Phys. 231(8), 3264–3288 (2012)

    MATH  MathSciNet  Google Scholar 

  142. Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory. Q. J. R. Meteorol. Soc. 113(478), 1311–1328 (1987)

    Google Scholar 

  143. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer, New York/London (2009)

    MATH  Google Scholar 

  144. Doucet, A., Godsil, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Becker, F., Petra, S., Schnörr, C. (2015). Optical Flow. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_38

Download citation

Publish with us

Policies and ethics