Skip to main content

Splines and Multiresolution Analysis

  • Reference work entry
Handbook of Mathematical Methods in Imaging
  • 5875 Accesses

Abstract

Splines and multiresolution are two independent concepts, which – considered together – yield a vast variety of bases for image processing and image analysis. The idea of a multiresolution analysis is to construct a ladder of nested spaces that operate as some sort of mathematical looking glass. It allows to separate coarse parts in a signal or in an image from the details of various sizes. Spline functions are piecewise or domainwise polynomials in one dimension (1D) resp. nD. There is a variety of spline functions that generate multiresolution analyses. The viewpoint in this chapter is the modeling of such spline functions in frequency domain via Fourier decay to generate functions with specified smoothness in time domain resp. space domain. The mathematical foundations are presented and illustrated at the example of cardinal B-splines as generators of multiresolution analyses. Other spline models such as complex B-splines, polyharmonic splines, hexagonal splines, and others are considered. For all these spline families exist fast and stable multiresolution algorithms which can be elegantly implemented in frequency domain. The chapter closes with a look on open problems in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldroubi, A., Unser, M.A. (eds.): Wavelets in Medicine and Biology. CRC, Boca Raton (1996)

    MATH  Google Scholar 

  2. Baraniuk, R.: Compressive Sensing. IEEE Signal Process. Mag. 4(4), 118–120, 124 (2007)

    Google Scholar 

  3. Bartels, R.H., Bealty, J.C., Beatty, J.C.: An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufman, Los Altos (1995)

    Google Scholar 

  4. Battle, G.: A block spin construction of ondelettes. Part 1: Lemarié functions. Commun. Math. Phys. 110, 601–615 (1987)

    Article  MathSciNet  Google Scholar 

  5. Blu, T., Unser, M.: The fractional spline wavelet transform: definition and implementation. In: Proceedings of the 25th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’00), Istanbul, 5–9 June 2000, vol. 1, pp. 512–515 (2000)

    Google Scholar 

  6. Blu, T., Unser, M.: A complete family of scaling functions: the (α, τ)-fractional splines. In: Proceedings of the 28th International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), Hong Kong SAR, 6–10 Apr 2003, vol. 6, pp. 421–424 (2003)

    Google Scholar 

  7. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  8. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  9. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  10. Champeney, D.C.: A Handbook of Fourier Theorems. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  11. Chen, H.-l.: Complex Harmonic Splines, Periodic Quasi-wavelets, Theory and Applications. Kluwer Academic, Dordrecht (2000)

    Book  MATH  Google Scholar 

  12. Choi, J.Y., Kim, M.W., Seong, W., Ye, J.C.: Compressed sensing metal artifact removal in dental CT. In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), 28 June–1 July 2009, Boston, pp. 334–337 (2009)

    Google Scholar 

  13. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  14. Christensen, O.: Frames and Bases: An Introductory Course. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2008)

    Book  Google Scholar 

  15. Chui, C.K.: Multivariate Splines. Society for Industrial and Applied Mathematics, Philadelphia (1988)

    Book  Google Scholar 

  16. Chui, C.: Wavelets—a Tutorial in Theory and Practice. Academic, San Diego (1992)

    Google Scholar 

  17. Chui, C.K. (ed.): Wavelets: A Tutorial in Theory and Applications. Academic, Boston (1992)

    MATH  Google Scholar 

  18. Condat, L.: Image database. Online resource. http://www.greyc.ensicaen.fr/_lcondat/imagebase.html (2010). (Version of 22 Apr 2010)

  19. Condat, L., Forster-Heinlein, B., Van De Ville, D.: A new family of rotation-covariant wavelets on the hexagonal lattice. In: SPIE Wavelets XII, San Diego, Aug 2007

    Google Scholar 

  20. Dahmen, W., Kurdila, A., Oswald, P. (eds.): Multiscale Wavelet Methods for Partial Differential Equations. Volume 6 of Wavelet Analysis and Its Applications. Academic, San Diego (1997)

    Google Scholar 

  21. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  22. de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Volume 98 of Applied Mathematical Sciences. Springer, New York (1993)

    Google Scholar 

  23. de Boor, C., Devore, R.A., Ron, A.: Approximation from shift invariant subspaces of \({\mathrm{L}}_{2}({\mathrm{R}}^{{\mathrm{d}}})\). Trans. Am. Math. Soc. 341(2), 787–806 (1994)

    MATH  Google Scholar 

  24. Dierckx, P.: Curve and Surface Fitting with Splines. McGraw-Hill, New York (1993)

    MATH  Google Scholar 

  25. Feilner, M., Van De Ville, D., Unser, M.: An orthogonal family of quincunx wavelets with continuously adjustable order. IEEE Trans. Image Process. 4(4), 499–510 (2005)

    Article  Google Scholar 

  26. Forster, B., Massopust, P.: Statistical encounters with complex B-splines. Constr. Approx. 29(3), 325–344 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Forster, B., Blu, T., Unser, M.: Complex B-splines. Appl. Comput. Harmon. Anal. 20(2), 261–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Forster, B., Blu, T., Van De Ville, D., Unser, M.: Shiftinvariant spaces from rotation-covariant functions. Appl. Comput. Harmon. Anal. 25(2), 240–265 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Frikel, J.: A new framework for sparse regularization in limited angle x-ray tomography. In: IEEE International Symposium on Biomedical Imaging, Rotterdam (2010)

    Book  Google Scholar 

  30. Giles, R.C., Kotiuga, P.R., Mansuripur, M.: Parallel micromagnetic simulations using Fourier methods on a regular hexagonal lattice. IEEE Trans. Magn. 7(5), 3815–3818 (1991)

    Article  Google Scholar 

  31. Grigoryan, A.M.: Efficient algorithms for computing the 2-D hexagonal Fourier transforms. IEEE Trans Signal Process. 50(6), 1438–1448 (2002)

    Article  MathSciNet  Google Scholar 

  32. Hales, T.C.: The honeycomb conjecture. Discret. Comput. Geom. 25, 1–22 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Heil, C., Walnut, D.F.: Fundamental Papers in Wavelet Theory, New edn. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  34. Jones, D.S.: Generalised Functions. McGraw-Hill, London (1966)

    MATH  Google Scholar 

  35. Lai, M.-J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  36. Laine, A.F., Schuler, S., Fan, J., Huda, W.: Mammographic feature enhancement by multiscale analysis. IEEE Trans. Med. Imaging 13(4), 725–740 (1994)

    Article  Google Scholar 

  37. Legrand, P.: Local regularity and multifractal methods for image and signal analysis. In: Abry, P., Gonçalves, P., Véhel, L. (eds.) Scaling, Fractals and Wavelets, chap. 11. Wiley-ISTE, London (2009)

    Google Scholar 

  38. Lemarié, P.-G.: Ondelettes a localisation exponentielle. J. Math. Pures Appl. 67, 227–236 (1988)

    MATH  MathSciNet  Google Scholar 

  39. Lesage, F., Provost, J.: The application of compressed sensing for photo-acoustic tomography. IEEE Trans. Med. Imaging 28(4), 585–594 (2009)

    Article  Google Scholar 

  40. Lipow, P.R., Schoenberg, I.J.: Cardinal interpolation and spline functions. III: Cardinal hermite interpolation. Linear Algebra Appl. 6, 273–304 (1973)

    MATH  MathSciNet  Google Scholar 

  41. Louis, A.K., Maaß, P., Rieder, A.: Wavelets: Theory and Applications. Wiley, New York (1997)

    MATH  Google Scholar 

  42. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  43. Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Am. Math. Soc. 315, 69–87 (1989)

    MATH  MathSciNet  Google Scholar 

  44. Mallat, S.G.: A Wavelet Tour of Signal Processing. Academic, San Diego (1998)

    MATH  Google Scholar 

  45. Mersereau, R.M.: The processing of hexagonally sampled two-dimensional signals. Proc. IEEE 67(6), 930–949 (1979)

    Article  Google Scholar 

  46. Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  47. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Advances in Pattern Recognition. Springer, Berlin (2005)

    Google Scholar 

  48. Nicolier, F., Laligant, O., Truchetet, F.: B-spline quincunx wavelet transforms and implementation in Fourier domain. Proc. SPIE 3522, 223–234 (1998)

    Google Scholar 

  49. Nicolier, F., Laligant, O., Truchetet, F.: Discrete wavelet transform implementation in Fourier domain for multidimensional signal. J. Electron. Imaging 11, 338–346 (2002)

    Article  Google Scholar 

  50. Nürnberger, G.: Approximation by Spline Functions. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  51. Plonka, G., Tasche, M.: On the computation of periodic spline wavelets. Appl. Comput. Harmon. Anal. 2, 1–14 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  52. Püschel, M., Rötteler, M.: Algebraic signal processing theory: 2D spatial hexagonal lattice. IEEE Trans. Image Proc. 16(6), 1506–1521 (2007)

    Article  Google Scholar 

  53. Rabut, C.: Elementary m-harmonic cardinal B-splines. Numer. Algorithms 2, 39–62 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  54. Rabut, C.: High level m-harmonic cardinal B-splines. Numer. Algorithms 2, 63–84 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  55. Rice University: Compressive sensing resources. Online resource. http://dsp.rice.edu/cs (2010). (Version of 30 Apr 2010)

  56. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  57. Sablonnière, P., Sbibih, D.: B-splines with hexagonal support on a uniform three-direction mesh of the plane. C. R. Acad. Sci. Paris Sér. I 319, 227–282 (1994)

    Google Scholar 

  58. Schempp, W.: Complex Contour Integral Representation of Cardinal Spline Functions. Volume 7 of Contemporary Mathematics. American Mathematical Society, Providence (1982)

    Book  Google Scholar 

  59. Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Part A – on the problem of osculatory interpolation. A second class of analytic approximation formulae. Q. Appl. Math. 4, 112–141 (1946)

    MathSciNet  Google Scholar 

  60. Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Part A – on the problem of smoothing or graduation. A first class of analytic approximation formulae. Q. Appl. Math. 4, 45–99 (1946)

    MathSciNet  Google Scholar 

  61. Schoenberg, I.J.: Cardinal interpolation and spline functions. J. Approx. Theory 2, 167–206 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  62. Schoenberg, I.J.: Cardinal interpolation and spline functions. II: interpolation of data of power growth. J. Approx. Theory 6, 404–420 (1972)

    MATH  MathSciNet  Google Scholar 

  63. Schwartz, L.: Théorie des distributions. Hermann, Paris (1998)

    MATH  Google Scholar 

  64. Unser, M.: Splines: a perfect fit for medical imaging. In: Sonka, M., Fitzpatrick, J.M. (eds.) Progress in Biomedical Optics and Imaging, vol. 3, no. 22, vol. 4684, Part I of Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing (MI’02), San Diego, 24–28 Feb 2002, pp. 225–236

    Google Scholar 

  65. Unser, M., Blu, T.: Fractional splines and wavelets. SIAM Rev. 42(1), 43–67 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  66. Unser, M., Aldroubi, A., Eden, M.: Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 277–285 (1991)

    Article  Google Scholar 

  67. Unser, M., Aldroubi, A., Eden, M.: On the asymptotic convergence of B-spline wavelets to Gabor functions. IEEE Trans. Inf. Theory 38, 864–872 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  68. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: part I—Theory. IEEE Trans. Signal Process. 41(2), 821–833 (1993)

    Article  MATH  Google Scholar 

  69. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: part II—Efficient design and applications. IEEE Trans. Signal Process. 41(2), 834–848 (1993)

    Article  MATH  Google Scholar 

  70. Van De Ville, D., Blu, T., Unser, M., Philips, W., Lemahieu, I., Van de Walle, R.: Hex-splines: a novel spline family for hexagonal lattices. IEEE Trans. Image Process. 13(6), 758–772 (2004)

    Article  MathSciNet  Google Scholar 

  71. Van De Ville, D., Blu, T., Unser, M.: Isotropic polyharmonic B-splines: scaling functions and wavelets. IEEE Trans. Image Process. 14(11), 1798–1813 (2005)

    Article  MathSciNet  Google Scholar 

  72. Watson, A.B., Ahumuda, A.J., Jr.: Hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex. IEEE Trans. Biomed. Eng. 36(1), 97–106 (1989)

    Article  Google Scholar 

  73. Wendt, H., Roux, S.G., Jaffard, S., Abry, P.: Wavelet leaders and bootstrap for multifractal analysis of images. Signal Process. 89, 1100–1114 (2009)

    Article  MATH  Google Scholar 

  74. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Volume 37 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  75. Young, R.: An Introduction to Nonharmonic Fourier Series. Academic, New York (1980) (revised first edition 2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Forster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Forster, B. (2015). Splines and Multiresolution Analysis. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_28

Download citation

Publish with us

Policies and ethics