Skip to main content

Application of “Omics” Technologies to In Vitro Toxicology

  • Protocol
  • First Online:
In Vitro Toxicology Systems

Abstract

“Omics” technologies have facilitated significant advances in the understanding of toxicity mechanisms in complex biological systems. In this chapter we discuss the most important “omics” technologies and how they are currently applied in the field of in vitro toxicology. For each technology, advantages, limitations, and developmental needs are addressed. In addition, we provide some future prospects on the role of “omics” technologies in the emerging new paradigm of mechanistic toxicity studies. It becomes clear that technological developments have enhanced the application of “omics” technologies in toxicology and simplified the interpretation of the generated information; nevertheless, significant challenges remain to incorporate “omics” technologies and “omics” data in the regulatory decision making process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen ME, Krewski D (2010) The vision of toxicity testing in the 21st century: moving from discussion to action. Toxicol Sci 117(1): 17–24

    CAS  PubMed  Google Scholar 

  2. van Vliet E (2011) Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX 28(1):17–44

    PubMed  Google Scholar 

  3. Sun H, Xia M, Austin CP, Huang R (2012) Paradigm shift in toxicity testing and modeling. AAPS J 14(3):473–480

    CAS  PubMed Central  PubMed  Google Scholar 

  4. NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. National Academy Press, Washington, DC

    Google Scholar 

  5. Schmidt CW (2009) TOX21: new dimensions of toxicity testing. Environ Health Perspect 117(8):A348–A353

    PubMed Central  PubMed  Google Scholar 

  6. Aardema MJ, MacGregor JT (2002) Toxicology and genetic toxicology in the new era of “toxicogenomics”: impact of “-omics” technologies. Mutat Res 499(1):13–25

    CAS  PubMed  Google Scholar 

  7. Hartung T, van Vliet E, Jaworska J, Bonilla L, Skinner N, Thomas R (2012) Systems toxicology. ALTEX 29(2):119–128

    PubMed  Google Scholar 

  8. Keller DA, Juberg DR, Catlin N, Farland WH, Hess FG, Wolf DC, Doerrer NG (2012) Identification and characterization of adverse effects in 21st century toxicology. Toxicol Sci 126(2):291–297

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Krewski D, Acosta D Jr, Andersen M, Anderson H, Bailar JC 3rd, Boekelheide K, Brent R, Charnley G, Cheung VG, Green S Jr, Kelsey KT, Kerkvliet NI, Li AA, McCray L, Meyer O, Patterson RD, Pennie W, Scala RA, Solomon GM, Stephens M, Yager J, Zeise L (2010) Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev 13(2–4):51–138

    CAS  PubMed  Google Scholar 

  10. Krewski D, Westphal M, Al-Zoughool M, Croteau MC, Andersen ME (2011) New directions in toxicity testing. Annu Rev Public Health 32:161–178

    PubMed  Google Scholar 

  11. Bhattacharya S, Zhang Q, Carmichael PL, Boekelheide K, Andersen ME (2011) Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 6(6):e20887

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Hartung T, McBride M (2011) Food for Thought. on mapping the human toxome. ALTEX 28(2):83–93

    PubMed  Google Scholar 

  13. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B, Kinzler KW (1997) Characterization of the yeast transcriptome. Cell 88(2):243–251

    CAS  PubMed  Google Scholar 

  14. Clark TA, Sugnet CW, Ares M Jr (2002) Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296(5569):907–910

    CAS  PubMed  Google Scholar 

  15. David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW, Steinmetz LM (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 103(14):5320–5325

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Nagalakshmi U, Waern K, Snyder M. (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol 4:4.11.1–13

    Google Scholar 

  17. Irwin RD, Boorman GA, Cunningham ML, Heinloth AN, Malarkey DE, Paules RS (2004) Application of toxicogenomics to toxicology: basic concepts in the analysis of microarray data. Toxicol Pathol 32(Suppl 1):72–83

    CAS  PubMed  Google Scholar 

  18. McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17(1):4–11, doi:S1367-5931(12)00158-5

    CAS  PubMed  Google Scholar 

  19. Xiong M, Zhao Z, Arnold J, Yu F (2010) Next-generation sequencing. J Biomed Biotechnol 2010:370710. doi:10.1155/2010/370710

    PubMed Central  PubMed  Google Scholar 

  20. Bhargava V, Ko P, Willems E, Mercola M, Subramaniam S (2013) Quantitative transcriptomics using designed primer-based amplification. Sci Rep 3:1740

    PubMed Central  PubMed  Google Scholar 

  21. Maskos U, Southern EM (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res 20(7):1679–1684

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Augenlicht LH, Kobrin D (1982) Cloning and screening of sequences expressed in a mouse colon tumor. Cancer Res 42(3):1088–1093

    CAS  PubMed  Google Scholar 

  23. Okoniewski MJ, Miller CJ (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinforma 7:276, doi:1471-2105-7-276

    Google Scholar 

  24. Royce TE, Rozowsky JS, Gerstein MB (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 35(15):e99

    PubMed Central  PubMed  Google Scholar 

  25. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Haas BJ, Zody MC (2010) Advancing RNA-seq analysis. Nat Biotechnol 28(5):421–423, 159

    CAS  PubMed  Google Scholar 

  27. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Boguski MS, Tolstoshev CM, Bassett DE Jr (1994) Gene discovery in dbEST. Science 265(5181):1993–1994

    CAS  PubMed  Google Scholar 

  29. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487

    CAS  PubMed  Google Scholar 

  30. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):630–634

    CAS  PubMed  Google Scholar 

  31. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21(1 Suppl):20–24

    CAS  PubMed  Google Scholar 

  32. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14(13):1675–1680

    CAS  PubMed  Google Scholar 

  33. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    CAS  PubMed  Google Scholar 

  34. Kuo WP, Liu F, Trimarchi J, Punzo C, Lombardi M, Sarang J, Whipple ME, Maysuria M, Serikawa K, Lee SY, McCrann D, Kang J, Shearstone JR, Burke J, Park DJ, Wang X, Rector TL, Ricciardi-Castagnoli P, Perrin S, Choi S, Bumgarner R, Kim JH, Short GF 3rd, Freeman MW, Seed B, Jensen R, Church GM, Hovig E, Cepko CL, Park P, Ohno-Machado L, Jenssen TK (2006) A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nat Biotechnol 24(7):832–840

    CAS  PubMed  Google Scholar 

  35. Evans SJ, Datson NA, Kabbaj M, Thompson RC, Vreugdenhil E, De Kloet ER, Watson SJ, Akil H (2002) Evaluation of Affymetrix Gene Chip sensitivity in rat hippocampal tissue using SAGE analysis. Serial analysis of gene expression. Eur J Neurosci 16(3):409–413

    PubMed  Google Scholar 

  36. Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K, Hollingsworth MA, Cameron JL, Yeo CJ, Kern SE, Goggins M, Hruban RH (2003) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63(24):8614–8622

    CAS  PubMed  Google Scholar 

  37. Ibrahim AF, Hedley PE, Cardle L, Kruger W, Marshall DF, Muehlbauer GJ, Waugh R (2005) A comparative analysis of transcript abundance using SAGE and Affymetrix arrays. Funct Integr Genomics 5(3):163–174

    CAS  PubMed  Google Scholar 

  38. Bhattacharya B, Cai J, Luo Y, Miura T, Mejido J, Brimble SN, Zeng X, Schulz TC, Rao MS, Puri RK (2005) Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies. BMC Dev Biol 5:22, doi:1471-213X-5-22

    PubMed Central  PubMed  Google Scholar 

  39. Oudes AJ, Roach JC, Walashek LS, Eichner LJ, True LD, Vessella RL, Liu AY (2005) Application of Affymetrix array and Massively Parallel Signature Sequencing for identification of genes involved in prostate cancer progression. BMC Cancer 5:86

    PubMed Central  PubMed  Google Scholar 

  40. Liu F, Jenssen TK, Trimarchi J, Punzo C, Cepko CL, Ohno-Machado L, Hovig E, Kuo WP (2007) Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates. BMC Genomics 8:153

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Wilhelm BT, Landry JR (2009) RNA-seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48(3):249–257

    CAS  PubMed  Google Scholar 

  42. Baginsky S, Hennig L, Zimmermann P, Gruissem W (2010) Gene expression analysis, proteomics, and network discovery. Plant Physiol 152(2):402–410

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Flintoft L (2008) Transcriptomics: digging deep with RNA-seq. Nat Rev Genet 9:568

    Google Scholar 

  44. Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10(12):833–844

    CAS  PubMed  Google Scholar 

  45. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461(7265): 814–818

    CAS  PubMed  Google Scholar 

  47. Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Lee TI, Young RA (2012) Revisiting global gene expression analysis. Cell 151(3):476–482

    PubMed Central  PubMed  Google Scholar 

  48. Balcazar N, Blasse C, Duc Dang A, Hauswedell H, Thieme S (2010) RNA-sequencing: advanced algorithms for bioinformatics. http://www.mi.fu-berlin.de/wiki/pub/ABI/RnaSeqP4/1Lecture.pdf. Accessed 13 May 2010

  49. Trapnell C, Salzberg SL (2009) How to map billions of short reads onto genomes. Nat Biotechnol 27(5):455–457

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Baker SC, Bauer SR, Beyer RP, Brenton JD, Bromley B, Burrill J, Causton H, Conley MP, Elespuru R, Fero M et al (2005) The External RNA Controls Consortium: a progress report. Nat Methods 2(10):731–734

    CAS  PubMed  Google Scholar 

  51. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, Su Z, Chu TM, Goodsaid FM et al (2010) The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 28(8):827–838

    CAS  PubMed  Google Scholar 

  52. Krug AK, Kolde R, Gaspar JA, Rempel E, Balmer NV, Meganathan K, Vojnits K, Baquie M, Waldmann T, Ensenat-Waser R, Jagtap S, Evans RM, Julien S, Peterson H, Zagoura D, Kadereit S, Gerhard D, Sotiriadou I, Heke M, Natarajan K, Henry M, Winkler J, Marchan R, Stoppini L, Bosgra S, Westerhout J, Verwei M, Vilo J, Kortenkamp A, Hescheler J, Hothorn L, Bremer S, van Thriel C, Krause KH, Hengstler JG, Rahnenfuhrer J, Leist M, Sachinidis A (2013) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 87(1):123–143

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Irwin RD, Boorman GA, Cunningham ML, Heinloth AN, Malarkey DE, Paules RS (2004) Application of toxicogenomics to toxicology: basic concepts in the analysis of microarray data. Toxicol Pathol 32(Suppl 1):72–83

    CAS  PubMed  Google Scholar 

  54. Huang Q, Dunn RT 2nd, Jayadev S, DiSorbo O, Pack FD, Farr SB, Stoll RE, Blanchard KT (2001) Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol Sci 63(2):196–207

    CAS  PubMed  Google Scholar 

  55. Foster WR, Chen SJ, He A, Truong A, Bhaskaran V, Nelson DM, Dambach DM, Lehman-McKeeman LD, Car BD (2007) A retrospective analysis of toxicogenomics in the safety assessment of drug candidates. Toxicol Pathol 35(5):621–635

    CAS  PubMed  Google Scholar 

  56. Waring JF, Ciurlionis R, Jolly RA, Heindel M, Ulrich RG (2001) Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol Lett 120(1–3):359–368

    CAS  PubMed  Google Scholar 

  57. Jagtap S, Meganathan K, Gaspar J, Wagh V, Winkler J, Hescheler J, Sachinidis A (2011) Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol 162(8): 1743–1756

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Vojnits K, Ensenat-Waser R, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, Sachinidis A, Bremer-Hoffmann S (2012) A tanscriptomics study to elucidate the toxicological mechanism of methylmercury chloride in a human stem cell based in vitro test. Curr Med Chem 19(36):6224–6232

    CAS  PubMed  Google Scholar 

  59. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1): 46–53

    CAS  PubMed  Google Scholar 

  60. Jia P, Jin H, Meador CB, Xia J, Ohashi K, Liu L, Pirazzoli V, Dahlman KB, Politi K, Michor F, Zhao Z, Pao W (2013) Next-generation sequencing of paired tyrosine kinase inhibitor-sensitive and -resistant EGFR mutant lung cancer cell lines identifies spectrum of DNA changes associated with drug resistance. Genome Res 23:1434–1445

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Bus JS, Becker RA (2009) Toxicity testing in the 21st century: a view from the chemical industry. Toxicol Sci 112(2):297–302

    CAS  PubMed  Google Scholar 

  62. Wilson VS, Keshava N, Hester S, Segal D, Chiu W, Thompson CM, Euling SY (2013) Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment. Toxicol Appl Pharmacol 271(3):299–308.

    Google Scholar 

  63. Muers M (2010) Seq-ing regulatory variants. Nat Rev Genet 11(5):317

    CAS  PubMed  Google Scholar 

  64. Kussmann M, Raymond F, Affolter M (2006) OMICS-driven biomarker discovery in nutrition and health. J Biotechnol 124(4): 758–787

    CAS  PubMed  Google Scholar 

  65. Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49(4): 583–590

    CAS  PubMed  Google Scholar 

  66. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Wetmore BA, Merrick BA (2004) Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol 32(6):619–642

    CAS  PubMed  Google Scholar 

  68. Stein RC, Zvelebil MJ (2002) The application of 2D gel-based proteomics methods to the study of breast cancer. J Mammary Gland Biol Neoplasia 7(4):385–393

    PubMed  Google Scholar 

  69. Schirmer EC, Yates JR 3rd, Gerace L (2003) MudPIT: a powerful proteomics tool for discovery. Discov Med 3(18):38–39

    PubMed  Google Scholar 

  70. Washburn MP (2004) Utilisation of proteomics datasets generated via multidimensional protein identification technology (MudPIT). Brief Funct Genomic Proteomic 3(3):280–286

    CAS  PubMed  Google Scholar 

  71. Haqqani AS, Kelly J, Baumann E, Haseloff RF, Blasig IE, Stanimirovic DB (2007) Protein markers of ischemic insult in brain endothelial cells identified using 2D gel electrophoresis and ICAT-based quantitative proteomics. J Proteome Res 6(1):226–239

    CAS  PubMed  Google Scholar 

  72. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    CAS  PubMed  Google Scholar 

  73. Everley PA, Krijgsveld J, Zetter BR, Gygi SP (2004) Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics 3(7):729–735

    CAS  PubMed  Google Scholar 

  74. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958

    CAS  PubMed  Google Scholar 

  75. Ruepp SU, Tonge RP, Shaw J, Wallis N, Pognan F (2002) Genomics and proteomics analysis of acetaminophen toxicity in mouse liver. Toxicol Sci 65(1):135–150

    CAS  PubMed  Google Scholar 

  76. Lilley KS, Friedman DB (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics 1(4):401–409

    CAS  PubMed  Google Scholar 

  77. Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73(23):5683–5690

    CAS  PubMed  Google Scholar 

  78. Uleberg KE, Larssen E, Oysaed KB, Maeland M, Biornstad-Hjelle A (2010) Ecotoxicology goes MudPIT? Mar Environ Res 69:S34–S36

    CAS  PubMed  Google Scholar 

  79. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    CAS  PubMed  Google Scholar 

  80. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    CAS  PubMed  Google Scholar 

  81. Huang ZL, Wang HL, Huang HL, Xia LH, Chen CS, Qiu XX, Chen JB, Chen SS, Liang WH, Huang M et al (2012) iTRAQ-based proteomic profiling of human serum reveals down-regulation of platelet basic protein and apolipoprotein B100 in patients with hematotoxicity induced by chronic occupational benzene exposure. Toxicology 291(1–3):56–64

    CAS  PubMed  Google Scholar 

  82. Lamoureux F, Mestre E, Essig M, Sauvage FL, Marquet P, Gastinel LN (2011) Quantitative proteomic analysis of cyclosporine-induced toxicity in a human kidney cell line and comparison with tacrolimus. J Proteomics 75(2):677–694

    CAS  PubMed  Google Scholar 

  83. Ren FL, Wu H, Lei YL, Zhang HY, Liu R, Zhao Y, Chen XC, Zeng DQ, Tong AP, Chen LJ et al (2010) Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma. Mol Cancer 9:81

    PubMed Central  PubMed  Google Scholar 

  84. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4(10):1487–1502

    CAS  PubMed  Google Scholar 

  85. Barber DS, Stevens S, LoPachin RM (2007) Proteomic analysis of rat striatal synaptosomes during acrylamide intoxication at a low dose rate. Toxicol Sci 100(1):156–167

    CAS  PubMed  Google Scholar 

  86. Ouedraogo M, Baudoux T, Stevigny C, Nortier J, Colet JM, Efferth T, Qu F, Zhou J, Chan K, Shaw D et al (2012) Review of current and “omics” methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms. J Ethnopharmacol 140(3):492–512

    CAS  PubMed  Google Scholar 

  87. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    CAS  PubMed  Google Scholar 

  88. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1(2):153–161

    CAS  PubMed  Google Scholar 

  89. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455(7216): 1054–1056

    CAS  PubMed  Google Scholar 

  90. Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85(2):809–822

    CAS  PubMed  Google Scholar 

  91. Robertson DG, Watkins PB, Reily MD (2008) Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci 120(Suppl 1):S146–S170

    Google Scholar 

  92. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7(2): 128–139

    CAS  PubMed  Google Scholar 

  93. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem 403(6):1523–1548

    CAS  PubMed  Google Scholar 

  95. Wishart DS (2007) Human Metabolome Database: completing the ‘human parts list’. Pharmacogenomics 8(7):683–686

    PubMed  Google Scholar 

  96. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27(6):747–751

    CAS  PubMed  Google Scholar 

  97. Wishart DS (2008) Applications of metabolomics in drug discovery and development. Drugs R D 9(5):307–322

    CAS  PubMed  Google Scholar 

  98. Rubtsov DV, Waterman C, Currie RA, Waterfield C, Salazar JD, Wright J, Griffin JL (2010) Application of a Bayesian deconvolution approach for high-resolution (1)H NMR spectra to assessing the metabolic effects of acute phenobarbital exposure in liver tissue. Anal Chem 82(11):4479–4485

    CAS  PubMed  Google Scholar 

  99. Ludwig C, Viant MR (2010) Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal 21(1):22–32

    CAS  PubMed  Google Scholar 

  100. Holmes E, Antti H (2002) Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst 127(12):1549–1557

    CAS  PubMed  Google Scholar 

  101. Chagoyen M, Pazos F (2011) MBRole: enrichment analysis of metabolomic data. Bioinformatics 27(5):730–731

    CAS  PubMed  Google Scholar 

  102. Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6(6):743–760

    CAS  PubMed  Google Scholar 

  103. Barupal DK, Haldiya PK, Wohlgemuth G, Kind T, Kothari SL, Pinkerton KE, Fiehn O (2012) MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinforma 13:99

    Google Scholar 

  104. Kleinstreuer NC, Smith AM, West PR, Conard KR, Fontaine BR, Weir-Hauptman AM, Palmer JA, Knudsen TB, Dix DJ, Donley EL, Cezar GG (2011) Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 257(1):111–121

    CAS  PubMed  Google Scholar 

  105. Cuperlovic-Culf M, Barnett DA, Culf AS, Chute I (2010) Cell culture metabolomics: applications and future directions. Drug Discov Today 15(15–16):610–621

    CAS  PubMed  Google Scholar 

  106. Vulimiri SV, Misra M, Hamm JT, Mitchell M, Berger A (2009) Effects of mainstream cigarette smoke on the global metabolome of human lung epithelial cells. Chem Res Toxicol 22(3):492–503

    CAS  PubMed  Google Scholar 

  107. Kilk K, Mahlapuu R, Soomets U, Langel U (2009) Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling. Toxicology 265(3):87–95

    CAS  PubMed  Google Scholar 

  108. van Vliet E, Morath S, Eskes C, Linge J, Rappsilber J, Honegger P, Hartung T, Coecke S (2008) A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology 29(1):1–12

    PubMed  Google Scholar 

  109. Palmer JA, Poenitzsch AM, Smith SM, Conard KR, West PR, Cezar GG (2012) Metabolic biomarkers of prenatal alcohol exposure in human embryonic stem cell-derived neural lineages. Alcohol Clin Exp Res 36(8):1314–1324

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Cezar GG, Quam JA, Smith AM, Rosa GJ, Piekarczyk MS, Brown JF, Gage FH, Muotri AR (2007) Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev 16(6):869–882

    CAS  PubMed  Google Scholar 

  111. West PR, Weir AM, Smith AM, Donley EL, Cezar GG (2020) Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 247(1):18–27

    Google Scholar 

  112. Allis CD, Jenuwein T, Reinberg D (2007) Epigenetics, vol 1. John Inglis, New York

    Google Scholar 

  113. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638. doi:10.1016/j.cell.2007.02.006

    CAS  PubMed  Google Scholar 

  114. Pennisi E (2001) Behind the scenes of gene expression. Science 293(5532):1064–1067

    CAS  PubMed  Google Scholar 

  115. Dulac C (2010) Brain function and chromatin plasticity. Nature 465(7299):728–735. doi:10.1038/nature09231

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Smirnova L, Sittka A, Luch A (2012) On the role of low-dose effects and epigenetics in toxicology. EXS 101:499–550

    PubMed  Google Scholar 

  117. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    CAS  PubMed  Google Scholar 

  119. Zheng C, Hayes JJ (2003) Structures and interactions of the core histone tail domains. Biopolymers 68(4):539–546

    CAS  PubMed  Google Scholar 

  120. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    CAS  PubMed  Google Scholar 

  121. Waldmann T, Schneider R (2013) Targeting histone modifications-epigenetics in cancer. Curr Opin Cell Biol 25(2):184–189

    CAS  PubMed  Google Scholar 

  122. Weng MK, Zimmer B, Poltl D, Broeg MP, Ivanova V, Gaspar JA, Sachinidis A, Wullner U, Waldmann T, Leist M (2012) Extensive transcriptional regulation of chromatin modifiers during human neurodevelopment. PLoS ONE 7(5):e36708. doi:10.1371/journal.pone.0036708

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Collotta M, Bertazzi PA, Bollati V (2013) Epigenetics and pesticides. Toxicology 307: 35–41

    CAS  PubMed  Google Scholar 

  124. Stoccoro A, Karlsson HL, Coppedè F, Migliore L (2013) Epigenetic effects of nano-sized materials. Toxicology 313(1):3–14.

    Google Scholar 

  125. Osmond C, Barker DJ (2000) Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect 108(Suppl 3):545–553

    PubMed Central  PubMed  Google Scholar 

  126. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21(2):163–167

    CAS  PubMed  Google Scholar 

  127. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    CAS  PubMed  Google Scholar 

  128. Fullgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30(31):3391–3403

    CAS  PubMed  Google Scholar 

  129. Kurdistani SK (2011) Histone modifications in cancer biology and prognosis. Prog Drug Res 67:91–106

    CAS  PubMed  Google Scholar 

  130. You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22(1):9–20

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Ramocki MB, Zoghbi HY (2008) Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455(7215): 912–918. doi:10.1038/nature07457

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Kramer JM, van Bokhoven H (2009) Genetic and epigenetic defects in mental retardation. Int J Biochem Cell Biol 41(1):96–107

    CAS  PubMed  Google Scholar 

  133. Graff J, Mansuy IM (2009) Epigenetic dysregulation in cognitive disorders. Eur J Neurosci 30(1):1–8

    PubMed  Google Scholar 

  134. Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S (2008) Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 106(3):1378–1387

    CAS  PubMed  Google Scholar 

  135. Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 21(4):214–222

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, de Jong-van den Berg LT (2010) Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med 362(23): 2185–2193

    CAS  PubMed  Google Scholar 

  137. Meador KJ, Baker GA, Browning N, Clayton-Smith J, Combs-Cantrell DT, Cohen M, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, Privitera M, Loring DW (2009) Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N Engl J Med 360(16):1597–1605

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Tung EW, Winn LM (2011) Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharmacol 80(6):979–987

    CAS  PubMed  Google Scholar 

  139. Tung EW, Winn LM (2011) Valproic acid-induced DNA damage increases embryonic p27(KIP1) and caspase-3 expression: a mechanism for valproic-acid induced neural tube defects. Reprod Toxicol 32(3):255–260

    CAS  PubMed  Google Scholar 

  140. Wiltse J (2005) Mode of action: inhibition of histone deacetylase, altering WNT-dependent gene expression, and regulation of beta-catenin–developmental effects of valproic acid. Crit Rev Toxicol 35(8–9):727–738

    CAS  PubMed  Google Scholar 

  141. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276(39):36734–36741

    CAS  PubMed  Google Scholar 

  142. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20(24):6969–6978

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Balmer NV, Weng MK, Zimmer B, Ivanova VN, Chambers SM, Nikolaeva E, Jagtap S, Sachinidis A, Hescheler J, Waldmann T, Leist M (2012) Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 21(18):4104–4114

    CAS  PubMed  Google Scholar 

  144. Landrigan PJ, Sonawane B, Butler RN, Trasande L, Callan R, Droller D (2005) Early environmental origins of neurodegenerative disease in later life. Environ Health Perspect 113(9):1230–1233

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Krug AK, Kolde R, Gaspar JA, Rempel E, Balmer NV, Meganathan K, Vojnits K, Baquié M, Waldmann T, Ensenat-Waser R, Jagtap S, Evans RM, Julien S, Peterson H, Zagoura D, Kadereit S, Gerhard D, Sotiriadou I, Heke M, Natarajan K, Henry M, Winkler J, Marchan R, Stoppini L, Bosgra S, Westerhout J, Verwei M, Vilo J, Kortenkamp A, Hescheler J, Hothorn L, Bremer S, van Thriel C, Krause KH, Hengstler JG, Rahnenführer J, Leist M, Sachinidis A (2013) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 87(1):123–43.

    Google Scholar 

  146. Schmidt U, Holsboer F, Rein T (2011) Epigenetic aspects of posttraumatic stress disorder. Dis Markers 30(2–3):77–87

    PubMed Central  PubMed  Google Scholar 

  147. Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH (2008) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28(1):3–9

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Smeester L, Rager JE, Bailey KA, Guan X, Smith N, Garcia-Vargas G, Del Razo LM, Drobna Z, Kelkar H, Styblo M, Fry RC (2011) Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol 24(2): 165–167

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Yoshida T, Yamauchi H, Fan Sun G (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol 198(3):243–252

    CAS  PubMed  Google Scholar 

  150. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A 94(20):10907–10912

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Okoji RS, Yu RC, Maronpot RR, Froines JR (2002) Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BL/6J mice. Carcinogenesis 23(5):777–785

    CAS  PubMed  Google Scholar 

  152. Benbrahim-Tallaa L, Waterland RA, Styblo M, Achanzar WE, Webber MM, Waalkes MP (2005) Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 206(3):288–298

    CAS  PubMed  Google Scholar 

  153. Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV (2007) Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86(4):1179–1186

    CAS  PubMed  Google Scholar 

  154. Majumdar S, Chanda S, Ganguli B, Mazumder DN, Lahiri S, Dasgupta UB (2010) Arsenic exposure induces genomic hypermethylation. Environ Toxicol 25(3):315–318

    CAS  PubMed  Google Scholar 

  155. Ramirez T, Brocher J, Stopper H, Hock R (2008) Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 117(2):147–157

    CAS  PubMed  Google Scholar 

  156. Li J, Chen P, Sinogeeva N, Gorospe M, Wersto RP, Chrest FJ, Barnes J, Liu Y (2002) Arsenic trioxide promotes histone H3 phosphoacetylation at the chromatin of CASPASE-10 in acute promyelocytic leukemia cells. J Biol Chem 277(51):49504–49510

    CAS  PubMed  Google Scholar 

  157. Jo WJ, Ren X, Chu F, Aleshin M, Wintz H, Burlingame A, Smith MT, Vulpe CD, Zhang L (2009) Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure. Toxicol Appl Pharmacol 241(3):294–302

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Chu F, Ren X, Chasse A, Hickman T, Zhang L, Yuh J, Smith MT, Burlingame AL (2011) Quantitative mass spectrometry reveals the epigenome as a target of arsenic. Chem Biol Interact 192(1–2):113–117. doi:10.1016/j.cbi.2010.11.003

    CAS  PubMed  Google Scholar 

  159. Zhou X, Sun H, Ellen TP, Chen H, Costa M (2008) Arsenite alters global histone H3 methylation. Carcinogenesis 29(9):1831–1836. doi:10.1093/carcin/bgn063

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Ehrlich M, Wang RY (1981) 5-Methylcytosine in eukaryotic DNA. Science 212(4501):1350–1357

    CAS  PubMed  Google Scholar 

  161. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935. doi:10.1126/science.1170116

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Shen L, Waterland RA (2007) Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 10(5):576–581

    CAS  PubMed  Google Scholar 

  163. Nagarajan RP, Fouse SD, Bell RJ, Costello JF (2013) Methods for cancer epigenome analysis. Adv Exp Med Biol 754:313–338

    CAS  PubMed  Google Scholar 

  164. Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE 5(1):e8888

    PubMed Central  PubMed  Google Scholar 

  165. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473(7347):394–397

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38(Database issue):D234–D236

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Kinney SM, Chin HG, Vaisvila R, Bitinaite J, Zheng Y, Esteve PO, Feng S, Stroud H, Jacobsen SE, Pradhan S (2011) Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286(28):24685–24693

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Hartung T, van Vliet E, Jaworska J, Bonilla L, Skinner N, Thomas R (2012) Systems toxicology. ALTEX 29(2):119–128

    PubMed  Google Scholar 

  169. Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27(20): 2917–2918

    CAS  PubMed  Google Scholar 

  170. Gonzalez I, Cao KA, Davis MJ, Dejean S (2012) Visualising associations between paired ‘omics’ data sets. BioData Min 5(1):19

    PubMed Central  PubMed  Google Scholar 

  171. Wilmes A, Limonciel A, Aschauer L, Moenks K, Bielow C, Leonard MO, Hamon J, Carpi D, Ruzek S, Handler A, Schmal O, Herrgen K, Bellwon P, Burek C, Truisi GL, Hewitt P, Di Consiglio E, Testai E, Blaauboer BJ, Guillou C, Huber CG, Lukas A, Pfaller W, Mueller SO, Bois FY, Dekant W, Jennings P (2013) Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics 79: 180–194

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin van Vliet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Balmer, N.V. et al. (2014). Application of “Omics” Technologies to In Vitro Toxicology. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics