Skip to main content

Burn Mouse Models

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree burn injury was induced with a hot-air blower. The third-degree burn was confirmed histologically. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization of the skin showed an increased polymorphonuclear neutrophil granulocytes dominated inflammation in the group of mice with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gedde H, Sparsø BH, Sheller J, Kofoed JF, Drzewiecki K, Sørensen K, Dahlstrøm K, Dahlfelt K (2006) Specialebeskrivelse I plastikkirurgi; februar:1–24

    Google Scholar 

  2. (2011) http://www.ameriburn.org/resources_factsheet.php

  3. Askarian M, Hosseini RS, Kheirandish P, Memish ZA (2003) Incidence of urinary tract and bloodstream infections in Ghotbeddin Burn Center, Shiraz 2000–2001. Burns 29: 455–439

    Article  Google Scholar 

  4. http://www.who.int/violence_injury_prevention/other_injury/burns/en/index.html

  5. O’Sullivan ST, O’Connorm TPF (1997) Immunosuppression following thermal injury: the pathogenesis of immunodysfunction. Br J Plast Surg 50:615–623

    Article  Google Scholar 

  6. Peng D, Huang W, Ai S, Wang S (2006) Clinical significance of leukocyte infiltrative response in deep wound of patients with major burns. Burns 3:946–50

    Article  Google Scholar 

  7. Benson A (2006) ABC of wound healing. BMJ 332:649–652

    Article  Google Scholar 

  8. http://www.healthofchildren.com/images/gech

  9. Altoparlak U, Erol S, Akcay MN, Celebi F, Kadanali A (2004) The time-related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients. Burns 30: 660–664

    Article  Google Scholar 

  10. Rastegar AL, Honar HB, Alaghehbandan R (1998) Pseudomonas infections in Tohid Burn Centen, Iran. Burns 24:637–641

    Article  Google Scholar 

  11. De Macedo JL, Santos JB (2006) Nosocomial infections in a Brazilian Burn unit. Burns 32: 477–481

    Article  Google Scholar 

  12. Albrecht MA, Griffith ME, Mauray CK, Chung KK, Horvath EE, Ward JA, Hospenthal DR, Holocomb JB, Wolf SE (2006) Impact of Acinetobacter infection on the mortality of burn patients. J Am Coll Surg 203:546–550

    Article  Google Scholar 

  13. Fogle MR, Griswold JA, Oliver JW, Hamood AN (2002) Anti-ETA IgG neutralizes the effects of Pseudomonas aeruginosa exotoxin A. J Surg Res 106:86–98

    Article  CAS  Google Scholar 

  14. Tredget EE, Shankowsky HA, Rennie R, Burrel RE, Logsetty S (2004) Pseudomonas aeruginosa in the thermally injured patient. Burns 30:3–26

    Article  Google Scholar 

  15. Kolmos HJ, Thuesen B, Nielsen SV, Lohmann M, Kristoffersen K, Rosdahl VT (1993) Outbreak of infection in a burns unit due to Pseudomonas aeruginosa originating from contaminated tubing used for irrigation of patients. J Hosp Infect 24:11–21

    Article  CAS  Google Scholar 

  16. Mayhall CG (2003) The epidemiology of burn wound infections: then and now. Clin Infect Dis 37:543–550

    Article  Google Scholar 

  17. Ong YS, Samuel M, Song SC (2006) Meta-analysis of early excision of burns. Burns 32: 145–150

    Article  Google Scholar 

  18. Guggenheim M, Thurnheer T, Gmür R, Giovanoli P, Guggenheim B (2011) Validation of the Zürich burn-biofilm model. Burns 37:1125–1133

    Article  Google Scholar 

  19. Janzekovic Z (1970) A new concept in the early excision and immediate grafting of burns. J Trauma 10:1103–1108

    Article  CAS  Google Scholar 

  20. Hart DW, Wolf SE, Chinkes DL, Beaufortd RB, Mlcak RP, Heggers JP, Wolfe RR, Herndon DN (2003) Effects of early excision and aggressive enteral feeding on hypermetablism, catablism, and sepsis after severe burn. J Trauma 54:755–764

    Article  CAS  Google Scholar 

  21. Chang KC, Ma H, Liao WC, Lee CK, Lin CY, Chen CC (2010) The optimal time for early burn wound excision to reduce pro-inflammatory cytokine production in a murine burn injury model. Burns 36:1059–1066

    Article  Google Scholar 

  22. Alp E, Coruh A, Gunay GK, Yontar Y, Doganay M (2012) Risk factors for nosocomial infection and mortality in burn patients: 10 years of experience at a university hospital. J Burn Care Res 33:379–385

    Article  Google Scholar 

  23. Walker HL, Mason AD (1968) A standard animal burn. J Trauma 8:1049–1051

    Article  CAS  Google Scholar 

  24. Dai T, Kharkwal GB, Tanaka M, Huang YY, Bil de Arce VJ, Hamblin MR (2011) Animal models of external traumatic wound infections. Virulence 2:296–315

    Article  Google Scholar 

  25. Orenstein A, Klein D, Kopolovic J, Winkler E, Malik Z, Keller N, Nitzan Y (1997) The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections. FEMS Immunol Med Microbiol 19:307–314

    Article  CAS  Google Scholar 

  26. Nusbaum AG, Gil J, Rippy MK, Warne B, Valdes J, Claro A, Davis SC (2012) Effective method to remove wound bacteria: comparison of various debridement modalities in an in vivo porcine model. J Surg Res 176:701–707

    Article  Google Scholar 

  27. Stieritz DD, Holder LA (1975) Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. J Infect Dis 131: 688–691

    Article  CAS  Google Scholar 

  28. Calum H, Moser C, Jensen PØ, Christophersen L, Maling DS, Van Gennip M, Bjarnholt T, Hougen HP, Givskov M, Jacobsen GK, Høiby N (2009) Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection. Clin Exp Immunol 156: 102–110

    Article  CAS  Google Scholar 

  29. Gilpin DA (1996) Calculation of a new Meeh constant and experimental determination of burn size. Burns 22:607–611

    Article  CAS  Google Scholar 

  30. Clancy KD, Lorenz K, Dries D, Gamelli RL, Hahn EL (2000) Chlorpromazine modulates cytokine expression in the liver and lung after burn injury and endotoxemia. J Trauma 48: 215–223

    Article  CAS  Google Scholar 

  31. http://www.ecu.edu/Pseudomonas;PAO0001

  32. Graddock CG (1972) Production, distribution, and fate of granulocytes. In: Williams WJ, Beutler E, Erslev AJ et al (eds) Hematology. McGraw-LliLL, New York, pp 607–618

    Google Scholar 

  33. Pallua N, Heimburg DV (2003) Pathogenic role of interleukin-6 in the development of sepsis. Part 1: study in a standardized contact burn murine model. Crit Care Med 31: 1490–1494

    Article  CAS  Google Scholar 

  34. Babcock GF (2003) Predictive medicine: severe trauma and burns. Clin Cytom 53B: 48–53

    Article  Google Scholar 

  35. Butler KL, Ambravaneswaran V, Agrawal N, Bilodeau M, Toner M, Tompkins RG, Fagan S, Irimia D (2010) Burn injury reduces neutrophil directional migration speed in microfluidic devices. PLoS One 5:e11921

    Article  Google Scholar 

  36. Ozkan AX, Ninnemann JL, Sullivan J (1986) Progress in the characterization of immunosuppressive glycopeptide (SAP) from patients with major thermal injruies. J Burn Care 7: 388–397

    Article  CAS  Google Scholar 

  37. Asko-Seljavaara S (1987) Granulocyte kinetics in burns. J Burn Care Rehabil 8:492–495

    Article  CAS  Google Scholar 

  38. Shoup M, Weisenberger JM, Wang JL, Pyle JM, Gamelli RL, Shankar R (1998) Mechanism of neutropenia involving myeloid maturation arrest in burn sepsis. Ann Surg 228:112–122

    Article  CAS  Google Scholar 

  39. Arturson G (1985) Neutrophil granulocyte functions in severely burned patients. Burns 11:309–319

    Article  CAS  Google Scholar 

  40. Barnea Y, Carmeli Y, Kuzmenko B, Eyal G, Hammer-Munz O, Navon-Venezia S (2006) The establishment of a Pseudomonas aeruginosa-infected burn-wound sepsis model and the effect of imipenem treatment. Ann Plast Surg 56:674–679

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Høiby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Calum, H., Høiby, N., Moser, C. (2014). Burn Mouse Models. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_60

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics