Skip to main content

Morphology and Properties of Astrocytes

  • Protocol
  • First Online:
The Blood-Brain and Other Neural Barriers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 686))

Abstract

Astrocytes were identified about 150 years ago, and, for the longest time, were considered to be supporting cells in the brain providing trophic, metabolic, and structural support for neural networks. Research in the last 2 decades has uncovered many novel molecules in astrocytes and the finding that astrocytes communicate with neurons via Ca2+ signaling, which leads to release of chemical transmitters, termed gliotransmitters, has led to renewed interest in their biology. This chapter will briefly review the unique morphology and molecular properties of astrocytes. The reader will be introduced to the role of astrocytes in blood-brain barrier (BBB) maintenance, in Ca2+signaling, in synaptic transmission, in CNS synaptogenesis, and as neural progenitor cells. Mention is also made of the diseases in which astrocyte dysfunction has a role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parpura V, Haydon PG (2009) Astrocytes in (Patho) Physiology of the Nervous System. Springer Science + Business Media, New York

    Google Scholar 

  2. Virchow R (1860) Cellular Pathology. Churchill, London

    Google Scholar 

  3. Cajal SR (1913) Sobre un neuvo proceder de impregnacion de la neuriglia y sus resultados en los centros nerviosos del hombre y animales. Trab lab Invest Biol Univ Madr 11:219–237

    Google Scholar 

  4. Weigert F (1895) Beitrage zur Kermtnis der normalen menschlichen Neuroglia Weisbrod, Frankfurt am Main

    Google Scholar 

  5. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17: 375–412

    PubMed  CAS  Google Scholar 

  6. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    PubMed  CAS  Google Scholar 

  7. Rouach N, Avignone E, Meme W, Koulakoff A, Venance L, Blomstrand F, Giaume C (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94:457–475

    PubMed  CAS  Google Scholar 

  8. Wolff JR, Stuke K, Missler M, Tytko H, Schwarz P, Rohlmann A, Chao TI (1998) Autocellular coupling by gap junctions in cultured astrocytes: a new view on cellular autoregulation during process formation. Glia 24:121–140

    PubMed  CAS  Google Scholar 

  9. Rohlmann, A, Wolff, J (1996) Subcellular Topography and Plasticity of Gap Junction Distribution in Astrocytes. RG Landes, Austin

    Google Scholar 

  10. Nagy JI, Patel D, Ochalski PA, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88: 447–468

    PubMed  CAS  Google Scholar 

  11. Penes MC, Li X, Nagy JI (2005) Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci 22:404–418

    PubMed  Google Scholar 

  12. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22: 183–192

    PubMed  CAS  Google Scholar 

  13. Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22:73–86

    PubMed  Google Scholar 

  14. Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113:221–233

    PubMed  CAS  Google Scholar 

  15. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    PubMed  CAS  Google Scholar 

  16. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477

    PubMed  CAS  Google Scholar 

  17. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    PubMed  CAS  Google Scholar 

  18. Chan-Ling T, Stone J (1991) Factors determining the migration of astrocytes into the developing retina: migration does not depend on intact axons or patent vessels. J Comp Neurol 303:375–386

    PubMed  CAS  Google Scholar 

  19. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    PubMed  CAS  Google Scholar 

  20. Bass NH, Hess HH, Pope A, Thalheimer C (1971) Quantitative cytoarchitectonic distribution of neurons, glia, and DNa in rat cerebral cortex. J Comp Neurol 143:481–490

    PubMed  CAS  Google Scholar 

  21. Leuba G, Garey LJ (1989) Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man. Exp Brain Res 77:31–38

    PubMed  CAS  Google Scholar 

  22. Cajal, RSY (1995) Histology of the Nervous System of Man and Vertebrates. Oxford University Press, New York

    Google Scholar 

  23. Defelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316

    PubMed  Google Scholar 

  24. Andriezen L (1893) The neuroglia elements in the human brain. BMJ 29:227–230

    Google Scholar 

  25. Retzius G (1894) Die neuroglia des Gehirns beim Menschen und bei Saeugethieren. Biol Untersuchungen 6:1–28

    Google Scholar 

  26. Colombo JA, Reisin HD (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006:126–131

    PubMed  CAS  Google Scholar 

  27. Colombo JA, Gayol S, Yanez A, Marco P (1997) Immunocytochemical and electron microscope observations on astroglial interlaminar processes in the primate neocortex. J Neurosci Res 48:352–357

    PubMed  CAS  Google Scholar 

  28. Butt AM, Colquhoun K, Berry M (1994) Confocal imaging of glial cells in the intact rat optic nerve. Glia 10:315–322

    PubMed  CAS  Google Scholar 

  29. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    PubMed  CAS  Google Scholar 

  30. Ludwin SK, Kosek JC, Eng LF (1976) The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol 165:197–207

    PubMed  CAS  Google Scholar 

  31. Dermietzel R, Hertberg EL, Kessler JA, Spray DC (1991) Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11:1421–1432

    PubMed  CAS  Google Scholar 

  32. Kuzis K, Reed S, Cherry NJ, Woodward WR, Eckenstein FP (1995) Developmental time course of acidic and basic fibroblast growth factors’ expression in distinct cellular populations of the rat central nervous system.J Comp Neurol 358:142–153

    PubMed  CAS  Google Scholar 

  33. Yazaki N, Hosoi Y, Kawabata K, Miyake A, Minami M, Satoh M, Ohta M, Kawasaki T, Itoh N (1994) Differential expression patterns of mRNAs for members of the fibroblast growth factor receptor family, FGFR-1-FGFR-4, in rat brain. J Neurosci Res 37:445–452

    PubMed  CAS  Google Scholar 

  34. Neymeyer V, Tephly TR, Miller MW (1997) Folate and 10-formyltetrahydrofolate dehydrogenase (FDH) expression in the central nervous system of the mature rat. Brain Res 766:195–204

    PubMed  CAS  Google Scholar 

  35. Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291:19–31

    PubMed  CAS  Google Scholar 

  36. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    PubMed  CAS  Google Scholar 

  37. Berger UV, Tsukaguchi H, Hediger MA (1998) Distribution of mRNA for the facilitated urea transporter UT3 in the rat nervous system. Anat Embryol (Berl) 197:405–414

    CAS  Google Scholar 

  38. Sinclair CJ, LaRiviere CG, Young JD, Cass CE, Baldwin SA, Parkinson FE (2000) Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions. J Neurochem 75:1528–1538

    PubMed  CAS  Google Scholar 

  39. Simpson PB, Holtzclaw LA, Langley DB, Russell JT (1998) Characterization of ryanodine receptors in oligodendrocytes, type 2 astrocytes, and O-2A progenitors. J Neurosci Res 52:468–482

    PubMed  CAS  Google Scholar 

  40. Ronaldson PT, Persidsky Y, Bendayan R (2008) Regulation of ABC membrane transporters in glial cells: relevance to the pharmacotherapy of brain HIV-1 infection. Glia 56:1711–1735

    PubMed  Google Scholar 

  41. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262

    PubMed  CAS  Google Scholar 

  42. Kacem K, Lacombe P, Seylaz J, Bonvento G (1998) Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23:1–10

    PubMed  CAS  Google Scholar 

  43. Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204:428–437

    PubMed  CAS  Google Scholar 

  44. Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    PubMed  CAS  Google Scholar 

  45. Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    PubMed  CAS  Google Scholar 

  46. Nielsen S, Nagelhus EA, miry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    PubMed  CAS  Google Scholar 

  47. Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981–11986

    PubMed  CAS  Google Scholar 

  48. Dermietzel R, Leibstein AG (1978) The microvascular pattern and perivascular linings of the area postrema. A combined freeze-etching and ultrathin section study. Cell Tissue Res 186:97–110

    PubMed  CAS  Google Scholar 

  49. Neuhaus J (1990) Orthogonal arrays of particles in astroglial cells: quantitative analysis of their density, size, and correlation with intramembranous particles. Glia 3:241–251

    PubMed  CAS  Google Scholar 

  50. Wolburg H (1995) Orthogonal arrays of intramembranous particles: a review with special reference to astrocytes. J Hirnforsch 36:239–258

    PubMed  CAS  Google Scholar 

  51. Furman CS, Gorelick-Feldman DA, Davidson KG, Yasumura T, Neely JD, Agre P, Rash JE (2003) Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Natl Acad Sci U S A 100: 13609–13614

    PubMed  CAS  Google Scholar 

  52. Rash JE, Davidson KG, Yasumura T, Furman CS (2004) Freeze-fracture and immunogold analysis of aquaporin-4 (AQP4) square arrays, with models of AQP4 lattice assembly. Neuroscience 129:915–934

    PubMed  CAS  Google Scholar 

  53. Nico B, Frigeri A, Nicchia GP, Quondamatteo F, Herken R, Errede M, Ribatti D, Svelto M, Roncali L (2001) Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci 114:1297–1307

    PubMed  CAS  Google Scholar 

  54. Amiry-Moghaddam M, Frydenlund DS, Ottersen OP (2004) Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129:999–1010

    PubMed  CAS  Google Scholar 

  55. Nicchia GP, Cogotzi L, Rossi A, Basco D, Brancaccio A, Svelto M, Frigeri A (2008) Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex. J Neurochem 105(6):2156–2165

    PubMed  CAS  Google Scholar 

  56. Warth A, Kroger S, Wolburg H (2004) Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol 107:311–318

    PubMed  CAS  Google Scholar 

  57. Rascher G, Fischmann A, Kroger S, Duffner F, Grote EH, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104:85–91

    PubMed  CAS  Google Scholar 

  58. Wolburg-Buchholz K, Mack AF, Steiner E, Pfeiffer F, Engelhardt B, Wolburg H (2009) Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol 118:219–233

    PubMed  CAS  Google Scholar 

  59. Schroder W, Seifert G, Huttmann K, Hinterkeuser S, Steinhauser C (2002) AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus. Mol Cell Neurosci 19: 447–458

    PubMed  Google Scholar 

  60. Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20: 5733–5740

    PubMed  CAS  Google Scholar 

  61. Olsen ML, Campbell SL, Sontheimer H (2007) Differential distribution of Kir4.1 in spinal cord astrocytes suggests regional differences in K+ homeostasis. J Neurophysiol 98:786–793

    PubMed  CAS  Google Scholar 

  62. Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991–1001

    PubMed  CAS  Google Scholar 

  63. Blake DJ, Kroger S (2000) The neurobiology of duchenne muscular dystrophy: learning lessons from muscle? Trends Neurosci 23:92–99

    PubMed  CAS  Google Scholar 

  64. Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P (2009) Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335:75–96

    PubMed  Google Scholar 

  65. Martin DL (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5:81–94

    PubMed  CAS  Google Scholar 

  66. Bunnemann B, Fuxe K, Metzger R, Bjelke B, Ganten D (1992) The semi-quantitative distribution and cellular localization of angiotensinogen mRNA in the rat brain. J Chem Neuroanat 5:245–262

    PubMed  CAS  Google Scholar 

  67. Intebi AD, Flaxman MS, Ganong WF, Deschepper CF (1990) Angiotensinogen production by rat astroglial cells in vitro and in vivo. Neuroscience 34:545–554

    PubMed  CAS  Google Scholar 

  68. Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR (1988) Astrocytes synthesize angiotensinogen in brain. Science 242: 1444–1446

    PubMed  CAS  Google Scholar 

  69. McKenzie JC (1992) Atrial natriuretic peptide-like immunoreactivity in astrocytes of parenchyma and glia limitans of the canine brain. J Histochem Cytochem 40:1211–1222

    PubMed  CAS  Google Scholar 

  70. McKenzie JC, Berman NE, Thomas CR, Young JK, Compton LY, Cothran LN, Liu WL, Klein RM (1994) Atrial natriuretic peptide-like (ANP-LIR) and ANP prohormone immunoreactive astrocytes and neurons of human cerebral cortex. Glia 12: 228–243

    PubMed  CAS  Google Scholar 

  71. McKenzie JC, Juan YW, Thomas CR, Berman NE, Klein RM (2001) Atrial natriuretic peptide-like immunoreactivity in neurons and astrocytes of human cerebellum and inferior olivary complex. J Histochem Cytochem 49:1453–1467

    PubMed  CAS  Google Scholar 

  72. Vilijn MH, Vaysse PJ, Zukin RS, Kessler JA (1988) Expression of preproenkephalin mRNA by cultured astrocytes and neurons. Proc Natl Acad Sci U S A 85:6551–6555

    PubMed  CAS  Google Scholar 

  73. Barnea A, guila-Mansilla N, Bigio EH, Worby C, Roberts J (1998) Evidence for regulated expression of neuropeptide Y gene by rat and human cultured astrocytes. Regul Pept 75–76:293–300

    PubMed  Google Scholar 

  74. Barnea A, Roberts J, Keller P, Word RA (2001) Interleukin-1beta induces expression of neuropeptide Y in primary astrocyte cultures in a cytokine-specific manner: induction in human but not rat astrocytes. Brain Res 896:137–145

    PubMed  CAS  Google Scholar 

  75. Buzas B (2002) Regulation of nociceptin/orphanin FQ gene expression in astrocytes by ceramide. Neuroreport 13:1707–1710

    PubMed  CAS  Google Scholar 

  76. Shinoda H, Marini AM, Cosi C, Schwartz JP (1989) Brain region and gene specificity of neuropeptide gene expression in cultured astrocytes. Science 245:415–417

    PubMed  CAS  Google Scholar 

  77. Shinoda H, Marini AM, Schwartz JP (1992) Developmental expression of the proenkephalin and prosomatostatin genes in cultured cortical and cerebellar astrocytes. Brain Res Dev Brain Res 67:205–210

    PubMed  CAS  Google Scholar 

  78. Too HP, Marriott DR, Wilkin GP (1994) Preprotachykinin-A and substance P receptor (NK1) gene expression in rat astrocytes in vitro. Neurosci Lett 182:185–187

    PubMed  CAS  Google Scholar 

  79. Paspalas CD, Halasy K, Gerics B, Papadopoulos GC, Hajos F (2001) Vasoactive intestinal polypeptide in neuroglia? Immunoelectron microscopic localization in astrocytes of the rat mesencephalon. Glia 34:229–233

    PubMed  CAS  Google Scholar 

  80. Virgintino D, Benagiano V, Maiorano E, Rizzi A, Errede M, Bertossi M, Roncali L, Ambrosi G (1996) Vasoactive intestinal polypeptide-like immunoreactivity in astrocytes of the human brain. Neuroreport 7: 1577–1581

    PubMed  CAS  Google Scholar 

  81. Ubink R, Calza L, Hokfelt T (2003) ‘Neuro’-peptides in glia: focus on NPY and galanin. Trends Neurosci 26:604–609

    PubMed  CAS  Google Scholar 

  82. Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail--chick transplantation chimeras. Dev Biol 84: 183–192

    PubMed  CAS  Google Scholar 

  83. Rubin LL, Barbu K, Bard F, Cannon C, Hall DE, Horner H, Janatpour M, Liaw C, Manning K, Morales J (1991) Differentiation of brain endothelial cells in cell culture. Ann N Y Acad Sci 633:420–425

    PubMed  CAS  Google Scholar 

  84. Beck DW, Vinters HV, Hart MN, Cancilla PA (1984) Glial cells influence polarity of the blood-brain barrier. J Neuropathol Exp Neurol 43:219–224

    PubMed  CAS  Google Scholar 

  85. Cancilla PA, DeBault LE (1983) Neutral amino acid transport properties of cerebral endothelial cells in vitro. J Neuropathol Exp Neurol 42:191–199

    PubMed  CAS  Google Scholar 

  86. Meresse S, Dehouck MP, Delorme P, Bensaid M, Tauber JP, Delbart C, Fruchart JC, Cecchelli R (1989) Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture.J Neurochem 53:1363–1371

    PubMed  CAS  Google Scholar 

  87. Raub TJ, Kuentzel SL, Sawada GA (1992) Permeability of bovine brain microvessel endothelial cells in vitro: barrier tightening by a factor released from astroglioma cells. Exp Cell Res 199:330–340

    PubMed  CAS  Google Scholar 

  88. Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J (1991) A cell culture model of the blood-brain barrier. J Cell Biol 115:1725–1735

    PubMed  CAS  Google Scholar 

  89. Tao-Cheng JH, Nagy Z, Brightman MW (1987) Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 7:3293–3299

    PubMed  CAS  Google Scholar 

  90. Dehouck B, Dehouck MP, Fruchart JC, Cecchelli R (1994) Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol 126:465–473

    PubMed  CAS  Google Scholar 

  91. Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, Ringbom C, De Boer AG, Breimer DD (2001) Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci 12:215–222

    PubMed  CAS  Google Scholar 

  92. Arthur FE, Shivers RR, Bowman PD (1987) Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res 433:155–159

    PubMed  CAS  Google Scholar 

  93. Lobrinus JA, Juillerat-Jeanneret L, Darekar P, Schlosshauer B, Janzer RC (1992) Induction of the blood-brain barrier specific HT7 and neurothelin epitopes in endothelial cells of the chick chorioallantoic vessels by a soluble factor derived from astrocytes. Brain Res Dev Brain Res 70:207–211

    PubMed  CAS  Google Scholar 

  94. Maxwell K, Berliner JA, Cancilla PA (1987) Induction of gamma-glutamyl transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res 410:309–314

    PubMed  CAS  Google Scholar 

  95. Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood-brain barrier. Glia 36:145–155

    PubMed  CAS  Google Scholar 

  96. Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9:900–906

    PubMed  CAS  Google Scholar 

  97. Tran ND, Correale J, Schreiber SS, Fisher M (1999) Transforming growth factor-beta mediates astrocyte-specific regulation of brain endothelial anticoagulant factors. Stroke 30:1671–1678

    PubMed  CAS  Google Scholar 

  98. Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, Furuuchi K, Kokai Y, Nakagawa T, Mori M, Sawada N (1999) Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem Biophys Res Commun 261: 108–112

    PubMed  CAS  Google Scholar 

  99. Sobue K, Yamamoto N, Yoneda K, Hodgson M E, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T (1999) Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res:35:155–164

    PubMed  CAS  Google Scholar 

  100. Sun D, Lytle C, O’Donnell ME (1997) IL-6 secreted by astroglial cells regulates Na-K-Cl cotransport in brain microvessel endothelial cells. Am J Physiol 272:C1829–C1835

    PubMed  CAS  Google Scholar 

  101. Stanimirovic DB, Ball R, Durkin JP (1995) Evidence for the role of protein kinase C in astrocyte-induced proliferation of rat cerebromicrovascular endothelial cells. Neurosci Lett 197:219–222

    PubMed  CAS  Google Scholar 

  102. Kakinuma Y, Hama H, Sugiyama F, Yagami K, Goto K, Murakami K, Fukamizu A (1998) Impaired blood-brain barrier function in angiotensinogen-deficient mice. Nat Med 4:1078–1080

    PubMed  CAS  Google Scholar 

  103. Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992

    PubMed  CAS  Google Scholar 

  104. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    PubMed  CAS  Google Scholar 

  105. Cotrina ML, Lin JH, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18:8794–8804

    PubMed  CAS  Google Scholar 

  106. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    PubMed  CAS  Google Scholar 

  107. Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18:4637–4645

    PubMed  CAS  Google Scholar 

  108. Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    PubMed  CAS  Google Scholar 

  109. Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823

    PubMed  CAS  Google Scholar 

  110. Takano T, Oberheim N, Cotrina ML, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40:S8–12

    PubMed  Google Scholar 

  111. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771

    PubMed  CAS  Google Scholar 

  112. Smith SJ (1994) Neural signalling. Neuromodulatory astrocytes. Curr Biol 4:807–810

    PubMed  CAS  Google Scholar 

  113. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, zmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95:15735–15740

    PubMed  CAS  Google Scholar 

  114. Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    PubMed  CAS  Google Scholar 

  115. Shi Y, Liu X, Gebremedhin D, Falck JR, Harder DR, Koehler RC (2008) Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex. J Cereb Blood Flow Metab 28:111–125

    PubMed  CAS  Google Scholar 

  116. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    PubMed  CAS  Google Scholar 

  117. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    PubMed  CAS  Google Scholar 

  118. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    PubMed  CAS  Google Scholar 

  119. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of waterand ion homeostasis. Neuroscience 129:877–896

    PubMed  CAS  Google Scholar 

  120. Tian GF, Takano T, Lin JH, Wang X, Bekar L, Nedergaard M (2006) Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Adv Drug Deliv Rev 58:773–787

    PubMed  CAS  Google Scholar 

  121. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    PubMed  CAS  Google Scholar 

  122. Cox SB, Woolsey TA, Rovainen CM (1993) Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 13:899–913

    PubMed  CAS  Google Scholar 

  123. Ngai AC, Ko KR, Morii S, Winn HR (1988) Effect of sciatic nerve stimulation on pial arterioles in rats. Am J Physiol 254: H133–H139

    PubMed  CAS  Google Scholar 

  124. Silva AC, Lee SP, Iadecola C, Kim SG (2000) Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J Cereb Blood Flow Metab 20:201–206

    PubMed  CAS  Google Scholar 

  125. Iadecola C (1993) Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci 16:206–214

    PubMed  CAS  Google Scholar 

  126. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    PubMed  CAS  Google Scholar 

  127. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    PubMed  CAS  Google Scholar 

  128. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    PubMed  CAS  Google Scholar 

  129. Petzold GC, Albeanu DF, Sato TF, Murthy VN (2008) Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58:897–910

    PubMed  CAS  Google Scholar 

  130. Niwa K, Haensel C, Ross ME, Iadecola C (2001) Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res 88:600–608

    PubMed  CAS  Google Scholar 

  131. Ellis EF, Police RJ, Yancey L, McKinney JS, Amruthesh SC (1990) Dilation of cerebral arterioles by cytochrome P-450 metabolites of arachidonic acid. Am J Physiol 259: H1171–H1177

    PubMed  CAS  Google Scholar 

  132. Gebremedhin D, Ma YH, Falck JR, Roman RJ, VanRollins M, Harder DR (1992) Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol 263:H519–H525

    PubMed  CAS  Google Scholar 

  133. Ellis EF, Wei EP, Cockrell CS, Choi S, Kontos HA (1983) The effect of PGF2 alpha on in vivo cerebral arteriolar diameter in cats and rats. Prostaglandins 26:917–923

    PubMed  CAS  Google Scholar 

  134. Benyo Z, Gorlach C, Wahl M (1998) Involvement of thromboxane A2 in the mediation of the contractile effect induced by inhibition of nitric oxide synthesis in isolated rat middle cerebral arteries. J Cereb Blood Flow Metab 18:616–618

    PubMed  CAS  Google Scholar 

  135. Filosa JA, Bonev AD, Nelson MT (2004) Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res 95:e73–e81

    PubMed  CAS  Google Scholar 

  136. Ishimoto H, Matsuoka I, Nakanishi H, Nakahata N (1996) A comparative study of arachidonic acid metabolism in rabbit cultured astrocytes and human astrocytoma cells (1321N1). Gen Pharmacol 27:313–317

    PubMed  CAS  Google Scholar 

  137. Faraci FM (1989) Effects of endothelin and vasopressin on cerebral blood vessels. Am J Physiol 257:H799–H803

    PubMed  CAS  Google Scholar 

  138. MacCumber MW, Ross CA, Snyder SH (1990) Endothelin in brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc Natl Acad Sci U S A 87:2359–2363

    PubMed  CAS  Google Scholar 

  139. Lange A, Gebremedhin D, Narayanan J, Harder D (1997) 20-Hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C. J Biol Chem 272:27345–27352

    PubMed  CAS  Google Scholar 

  140. Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214–1221

    PubMed  Google Scholar 

  141. Raichle ME, Hartman BK, Eichling JO, Sharpe LG (1975) Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci U S A 72:3726–3730

    PubMed  CAS  Google Scholar 

  142. Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15:5535–5550

    PubMed  CAS  Google Scholar 

  143. Xu HL, Mao L, Ye S, Paisansathan C, Vetri F, Pelligrino DA (2008) Astrocytes are a key conduit for upstream signaling of vasodilation during cerebral cortical neuronal activation in vivo. Am J Physiol Heart Circ Physiol 294:H622–H632

    PubMed  CAS  Google Scholar 

  144. Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87:528–537

    PubMed  Google Scholar 

  145. Hirase H, Qian L, Bartho P, Buzsaki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2:E96

    PubMed  Google Scholar 

  146. Parri HR, Crunelli V (2001) Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport 12:3897–3900

    PubMed  CAS  Google Scholar 

  147. Gobel W, Kampa BM, Helmchen F (2007) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4:73–79

    PubMed  Google Scholar 

  148. Tashiro A, Goldberg J, Yuste R (2002) Calcium oscillations in neocortical astrocytes under epileptiform conditions. J Neurobiol 50:45–55

    PubMed  CAS  Google Scholar 

  149. Balazsi G, Cornell-Bell AH, Moss F (2003) Increased phase synchronization of spontaneous calcium oscillations in epileptic human versus normal rat astrocyte cultures. Chaos 13:515–518

    PubMed  CAS  Google Scholar 

  150. Gordon GRJ, Mulligan SJ, MacVicar BA (2009) Astrocyte control of blood flow. In: Parpura V, Haydon P G (eds) Astrocytes in (Patho)Physiology of the Nervous System, Springer Science + Business Media, New York, pp 461–486

    Google Scholar 

  151. Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169

    PubMed  CAS  Google Scholar 

  152. Pasantes-Morales H (1996) Volume regulation in brain cells: cellular and molecular mechanisms. Metab Brain Dis 11:187–204

    PubMed  CAS  Google Scholar 

  153. Pasantes-Morales H, Franco R, Ochoa L, Ordaz B (2002) Osmosensitive release of neurotransmitter amino acids: relevance and mechanisms. Neurochem Res 27:59–65

    PubMed  CAS  Google Scholar 

  154. Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285:C96–101

    PubMed  CAS  Google Scholar 

  155. Kimelberg HK, MacVicar BA, Sontheimer H (2006) Anion channels in astrocytes: biophysics, pharmacology, and function. Glia 54:747–757

    PubMed  Google Scholar 

  156. Duffy S, MacVicar BA (1996) In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J Neurosci 16:71–81

    PubMed  CAS  Google Scholar 

  157. Abbott N, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    PubMed  CAS  Google Scholar 

  158. Schikorski T, Stevens CF (1999) Quantitative fine-structural analysis of olfactory cortical synapses. Proc Natl Acad Sci U S A 96:4107–4112

    PubMed  CAS  Google Scholar 

  159. Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906

    PubMed  CAS  Google Scholar 

  160. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143

    PubMed  CAS  Google Scholar 

  161. Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68:138–149

    PubMed  CAS  Google Scholar 

  162. Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26:536–542

    PubMed  CAS  Google Scholar 

  163. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    PubMed  CAS  Google Scholar 

  164. Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455

    PubMed  CAS  Google Scholar 

  165. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    PubMed  CAS  Google Scholar 

  166. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    PubMed  CAS  Google Scholar 

  167. Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450

    PubMed  CAS  Google Scholar 

  168. Finkbeiner SM (1993) Glial calcium. Glia 9:83–104

    PubMed  CAS  Google Scholar 

  169. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    PubMed  CAS  Google Scholar 

  170. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    PubMed  CAS  Google Scholar 

  171. Araque A, Sanzgiri RP, Parpura V, Haydon PG (1998) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829

    PubMed  CAS  Google Scholar 

  172. Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci 20:1800–1808

    PubMed  CAS  Google Scholar 

  173. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    PubMed  CAS  Google Scholar 

  174. Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484

    PubMed  CAS  Google Scholar 

  175. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    PubMed  CAS  Google Scholar 

  176. Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    PubMed  CAS  Google Scholar 

  177. Zhang Q, Fukuda M, Van BE, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101:9441–9446

    PubMed  CAS  Google Scholar 

  178. Takano T, Kang J, Jaiswal JK, Simon SM, Lin JH, Yu Y, Li Y, Yang J, Dienel G, Zielke HR, Nedergaard M (2005) Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A 102:16466–16471

    PubMed  CAS  Google Scholar 

  179. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  180. Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281:4274–4284

    PubMed  CAS  Google Scholar 

  181. Barbe MT, Monyer H, Bruzzone R (2006) Cell-cell communication beyond connexins: the pannexin channels. Physiology (Bethesda) 21:103–114

    CAS  Google Scholar 

  182. Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24:722–732

    PubMed  CAS  Google Scholar 

  183. Liu QS, Xu Q, Arcuino G, Kang J, Nedergaard M (2004) Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad Sci U S A 101:3172–3177

    PubMed  CAS  Google Scholar 

  184. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086

    PubMed  CAS  Google Scholar 

  185. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    PubMed  CAS  Google Scholar 

  186. Serrano A, Haddjeri N, Lacaille JC, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382

    PubMed  CAS  Google Scholar 

  187. Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666

    PubMed  CAS  Google Scholar 

  188. Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4:803–812

    PubMed  CAS  Google Scholar 

  189. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    PubMed  CAS  Google Scholar 

  190. Bergles DE, Diamond JS, Jahr CE (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9:293–298

    PubMed  CAS  Google Scholar 

  191. Bergles DE, Jahr CE (1998) Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci 18:7709–7716

    PubMed  CAS  Google Scholar 

  192. Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926

    PubMed  CAS  Google Scholar 

  193. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    PubMed  CAS  Google Scholar 

  194. Hallermayer K, Harmening C, Hamprecht B (1981) Cellular localization and regulation of glutamine synthetase in primary cultures of brain cells from newborn mice. J Neurochem 37:43–52

    PubMed  CAS  Google Scholar 

  195. Loo DT, Althoen MC, Cotman CW (1995) Differentiation of serum-free mouse embryo cells into astrocytes is accompanied by induction of glutamine synthetase activity. J Neurosci Res 42:184–191

    PubMed  CAS  Google Scholar 

  196. Mothet JP, Parent AT, Wolosker H, Brady RO, Jr., Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 97:4926–4931

    PubMed  CAS  Google Scholar 

  197. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A 96:13409–13414

    PubMed  CAS  Google Scholar 

  198. Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952

    PubMed  CAS  Google Scholar 

  199. Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci U S A 100:6789–6794

    PubMed  CAS  Google Scholar 

  200. Chesler M, Kaila K (1992) Modulation of pH by neuronal activity. Trends Neurosci 15:396–402

    PubMed  CAS  Google Scholar 

  201. Kelly JP, Van E (1974) Cell structure and function in the visual cortex of the cat. J Physiol 238:515–547

    PubMed  CAS  Google Scholar 

  202. Karwoski CJ, Newman EA, Shimazaki H, Proenza LM (1985) Light-evoked increases in extracellular K+ in the plexiform layers of amphibian retinas. J Gen Physiol 86:189–213

    PubMed  CAS  Google Scholar 

  203. Rausche G, Igelmund P, Heinemann U (1990) Effects of changes in extracellular potassium, magnesium and calcium concentration on synaptic transmission in area CA1 and the dentate gyrus of rat hippocampal slices. Pflugers Arch 415:588–593

    PubMed  CAS  Google Scholar 

  204. Barnes S, Bui Q (1991) Modulation of calcium-activated chloride current via pH-induced changes of calcium channel properties in cone photoreceptors. J Neurosci 11:4015–4023

    PubMed  CAS  Google Scholar 

  205. Prod’hom B, Pietrobon D, Hess P (1989) Interactions of protons with single open L-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion. J Gen Physiol 94:23–42

    PubMed  Google Scholar 

  206. Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347–350

    PubMed  CAS  Google Scholar 

  207. Chen JC, Chesler M (1992) pH transients evoked by excitatory synaptic transmission are increased by inhibition of extracellular carbonic anhydrase. Proc Natl Acad Sci U S A 89:7786–7790

    PubMed  CAS  Google Scholar 

  208. Newman EA (1996) Acid efflux from retinal glial cells generated by sodium bicarbonate cotransport. J Neurosci 16:159–168

    PubMed  CAS  Google Scholar 

  209. Blackburn D, Sargsyan S, Monk PN, Shaw PJ (2009) Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia 57:1251–1264

    PubMed  Google Scholar 

  210. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    PubMed  CAS  Google Scholar 

  211. Haydon PG, Blendy J, Moss SJ, Rob JF (2009) Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology 56:83–90

    PubMed  CAS  Google Scholar 

  212. Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277:1684–1687

    PubMed  CAS  Google Scholar 

  213. Nagler K, Mauch DH, Pfrieger FW (2001) Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J Physiol 533:665–679

    PubMed  CAS  Google Scholar 

  214. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661

    PubMed  CAS  Google Scholar 

  215. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357

    PubMed  CAS  Google Scholar 

  216. Pfrieger FW (2003) Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? Bioessays 25:72–78

    PubMed  Google Scholar 

  217. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von ZM, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285

    PubMed  CAS  Google Scholar 

  218. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    PubMed  CAS  Google Scholar 

  219. Slezak M, Pfrieger FW (2003) New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci 26:531–535

    PubMed  CAS  Google Scholar 

  220. Ullian EM, Christopherson KS, Barres BA (2004) Role for glia in synaptogenesis. Glia 47:209–216

    PubMed  Google Scholar 

  221. Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    PubMed  CAS  Google Scholar 

  222. Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    PubMed  CAS  Google Scholar 

  223. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    PubMed  CAS  Google Scholar 

  224. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    PubMed  CAS  Google Scholar 

  225. Seri B, Garcia-Verdugo JM, McEwen BS, varez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    PubMed  CAS  Google Scholar 

  226. Kriegstein A, varez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    PubMed  CAS  Google Scholar 

  227. Doetsch F, Garcia-Verdugo JM, varez-Buylla A (1999) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A 96:11619–11624

    PubMed  CAS  Google Scholar 

  228. Ihrie RA, Alvarez-Buylla A (2009) Neural stem cells disguised as astrocytes. In: Parpara V, Haydon PG (eds) Astrocytes in (Patho)physiology of the nervous system, Springer Science + Business Media, New York, pp 27–47

    Google Scholar 

  229. Goldman S (2003) Glia as neural progenitor cells. Trends Neurosci 26:590–596

    PubMed  CAS  Google Scholar 

  230. Klatzo I (1967) Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26:1–14

    PubMed  CAS  Google Scholar 

  231. Klatzo I (1994) Evolution of brain edema concepts. Acta Neurochir Suppl (Wien ) 60:3–6

    CAS  Google Scholar 

  232. Milhorat TH, Clark RG, Hammock MK (1970) Experimental hydrocephalus. 2. Gross pathological findings in acute and subacute obstructive hydrocephalus in the dog and monkey. J Neurosurg 32:390–399

    PubMed  CAS  Google Scholar 

  233. Milhorat TH, Clark RG, Hammock MK, McGrath PP (1970) Structural, ultrastructural, and permeability changes in the ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22:397–407

    PubMed  CAS  Google Scholar 

  234. Marmarou A (2007) A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 22:E1

    Google Scholar 

  235. Nag S, Manias JL, Stewart DJ (2009) Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol 118:197–217

    PubMed  Google Scholar 

  236. Cancilla PA, Bready J, Berliner J, Sharifi-Nia H, Toga AW, Santori EM, Scully S, deVellis J (1992) Expression of mRNA for glial fibrillary acidic protein after experimental cerebral injury. J Neuropathol Exp Neurol 51:560–565

    PubMed  CAS  Google Scholar 

  237. Klatzo I, Chui E, Fujiwara K, Spatz M (1980) Resolution of vasogenic brain edema. Adv Neurol 28:359–373

    PubMed  CAS  Google Scholar 

  238. Kimelberg HK (1995) Current concepts of brain edema. Review of laboratory investigations. J Neurosurg 83:1051–1059

    PubMed  CAS  Google Scholar 

  239. Bloch O, Manley GT (2007) The role of aquaporin-4 in cerebral water transport and edema. Neurosurg Focus 22:E3

    PubMed  Google Scholar 

  240. Papadopoulos MC, Verkman AS (2007) Aquaporin-4 and brain edema. Pediatr Nephrol 22:778–784

    PubMed  Google Scholar 

  241. Papadopoulos MC, Verkman AS (2008) Potential utility of aquaporin modulators for therapy of brain disorders. Prog Brain Res 170:589–601

    PubMed  CAS  Google Scholar 

  242. Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43

    PubMed  CAS  Google Scholar 

  243. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    PubMed  CAS  Google Scholar 

  244. Zador Z, Bloch O, Yao X, Manley GT (2007) Aquaporins: role in cerebral edema and brain water balance. Prog Brain Res 161:185–194

    PubMed  CAS  Google Scholar 

  245. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291–1293

    PubMed  CAS  Google Scholar 

  246. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6: 159–163

    PubMed  CAS  Google Scholar 

  247. Papadopoulos MC, Verkman AS (2005) Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 280:13906–13912

    PubMed  CAS  Google Scholar 

  248. Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 100:2106–2111

    PubMed  CAS  Google Scholar 

  249. Bloch O, Auguste KI, Manley GT, Verkman AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26:1527–1537

    PubMed  CAS  Google Scholar 

  250. Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26:520–522

    PubMed  CAS  Google Scholar 

  251. Chvatal A, Anderova M, Neprasova H, Prajerova I, Benesova J, Butenko O, Verkhratsky A (2008) Pathological potential of astroglia. Physiol Res 57 Suppl 3:S101–S110

    PubMed  CAS  Google Scholar 

  252. Guo S, Lo EH (2009) Dysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40:S4–S7

    PubMed  Google Scholar 

  253. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    PubMed  CAS  Google Scholar 

  254. Rodriguez JJ, Olabarria M, Chvatal A, Verkhratsky A (2009) Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16:378–385

    PubMed  CAS  Google Scholar 

  255. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9:453–457

    PubMed  CAS  Google Scholar 

  256. Rothstein JD, Van KM, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    PubMed  CAS  Google Scholar 

  257. Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    PubMed  CAS  Google Scholar 

  258. Gu X, Andre VM, Cepeda C, Li SH, Li XJ, Levine MS, Yang XW (2007) Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2:8

    PubMed  Google Scholar 

  259. Binder DK, Steinhauser C (2009) Role of astrocytes in epilepsy. In: Parpura V, Haydon PG (eds) Astrocytes in (Patho)Physiology of the Nervous System, Springer Science + Business Media, New York, pp 649–672

    Google Scholar 

  260. Jabs R, Seifert G, Steinhauser C (2008) Astrocytic function and its alteration in the epileptic brain. Epilepsia 49 Suppl 2: 3–12

    PubMed  CAS  Google Scholar 

  261. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M (2005) An astrocytic basis of epilepsy. Nat Med 11: 973–981

    PubMed  CAS  Google Scholar 

  262. Butterworth RF (2009) Hepatic encephalopathy: a primary astrocytopathy. In: Parpura V, Haydon PG (eds) Astrocytes in (Patho)Physiology of the Nervous System, Springer Science + Business Media, New York, pp 673–692

    Google Scholar 

  263. Brenner M, Goldman JE, Quinlan RA, Messing A (2009) Alexander disease: a genetic disorder of astrocytes. In: Parpura V, Haydon PG (eds) Astrocytes in (Patho)Physiology of the Nervous System, Springer Science + Business Media, New York, pp 592–648

    Google Scholar 

  264. Quinlan RA, Brenner M, Goldman JE, Messing A (2007) GFAP and its role in Alexander disease. Exp Cell Res 313:2077–2087

    PubMed  CAS  Google Scholar 

  265. Higashimori H, Sontheimer H (2007) Role of Kir4.1 channels in growth control of glia. Glia 55:1668–1679

    PubMed  Google Scholar 

  266. McCoy E, Sontheimer H (2007) Expression and function of water channels (aquaporins) in migrating malignant astrocytes. Glia 55:1034–1043

    PubMed  Google Scholar 

  267. Sontheimer H (2003) Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Trends Neurosci 26:543–549

    PubMed  CAS  Google Scholar 

  268. Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286

    PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are expressed to Drs. Cynthia Hawkins and Dittkavi S.R. Sarma for reviewing this manuscript and for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nag, S. (2011). Morphology and Properties of Astrocytes. In: Nag, S. (eds) The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology, vol 686. Humana Press. https://doi.org/10.1007/978-1-60761-938-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-938-3_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-937-6

  • Online ISBN: 978-1-60761-938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics