Skip to main content

Changes in the Heart That Accompany Advancing Age: Humans to Molecules

  • Chapter
  • First Online:
Aging and Heart Failure

Abstract

Age per se is the major risk factor for cardiovascular disease. Elucidation of the age-associated alterations in cardiac and arterial structure and function at both the cellular and molecular levels provides valuable clues that may assist in the development of effective therapies to prevent, to delay, or to attenuate the cardiovascular changes that accompany aging and contribute to the clinical manifestations of chronic heart failure. Changes in cardiac cell phenotype that occur with normal aging, as well as in HF associated with aging, include deficits in β-adrenergic receptor (β-AR) signaling, increased generation of reactive oxygen species (ROS), and altered excitation–contraction (EC) coupling that involves prolongation of the action potential (AP), intracellular Ca2+ (Cai 2+) transient and contraction, and blunted force and relaxation-frequency responses. Evidence suggests that altered sarcoplasmic reticulum (SR) Ca2+ uptake, storage, and release play central role in these changes, which also involve sarcolemmal L-type Ca2+ channel (LCC), Na+−Ca2+ exchanger (NCX), and K + channels.

In spite of the interest in the physiology of the age-associated changes in cardiovascular structure and function, however, cardiovascular aging has remained, for the most part, outside of mainstream clinical medicine. This is largely because the pathophysiologic implications of these age-associated changes are largely underappreciated and are not well disseminated in the medical community. In fact, age has traditionally been considered a nonmodifiable risk factor. Policy makers, researchers, and clinicians need to intensify their efforts toward identification of novel pathways that could be targeted for interventions aiming at retardation or attenuation of these age-associated alterations that occur in the heart and arteries, particularly in individuals in whom these alterations are accelerated. Translational studies would then examine whether these strategies (i.e., those targeting cardiovascular aging) can have a salutary impact on the adverse cardiovascular effects of accelerated cardiovascular aging. As such, cardiovascular aging is a promising frontier in preventive cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev. 1993;73:413.

    CAS  PubMed  Google Scholar 

  2. Leinwand LA. Sex is a potent modifier of the cardiovascular system. J Clin Invest. 2003;112:302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Konhilas JP, Leinwand LA. The effects of biological sex and diet on the development of heart failure. Circulation. 2007;116:2747.

    Article  PubMed  Google Scholar 

  4. Fermin DR, Barac A, Lee S, et al. Sex and age dimorphism of myocardial gene expression in nonischemic human heart failure. Circ Cardiovasc Genet. 2008;1:117–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Fleg JL, Schulman S, O’Connor FC, Becker LC, Gerstenblith G, Clulow JF, Renlund DG, Lakatta EG. Effects of acute β-adrenergic receptor blockade on age-associated changes in cardiovascular performance during dynamic exercise. Circulation. 1994;90:2333–41.

    Article  CAS  PubMed  Google Scholar 

  6. Yin FCP, Weisfeldt ML, Milnor WR. Role of aortic input impedance in the decreased cardiovascular response to exercise with aging in dogs. J Clin Invest. 1981;68:28–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brodde OE, Konschak U, Becker K, et al. Cardiac muscarinic receptors decrease with age. In vitro and in vivo studies. J Clin Invest. 1998;101:471.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Fraticelli A, Josephson R, Danziger R, Lakatta E, Spurgeon H. Morphological and contractile characteristics of rat cardiac myocytes from maturation to senescence. Am J Physiol. 1989;257:H259–65.

    CAS  PubMed  Google Scholar 

  9. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res. 1990;67:871–85.

    Article  CAS  PubMed  Google Scholar 

  10. Lakatta EG. Cardiovascular aging research: the next horizons. J Am Geriatr Soc. 1999;47:613–25.

    CAS  PubMed  Google Scholar 

  11. Cigola E, Kastura J, Li B, Meggs LG, Anversa P. Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res. 1997;231:363–71.

    Article  CAS  PubMed  Google Scholar 

  12. Younes A, Boluyt MO, O’Neill L, Meredith AL, Crow MT, Lakatta EG. Age-associated increase in rat ventricular ANP gene expression correlates with cardiac hypertrophy. Am J Physiol. 1995;38:H1003–8.

    Google Scholar 

  13. Caffrey JL, Boluyt MO, Younes A, Barron BA, O’Neill L, Crow MT, Lakatta EG. Aging, cardiac proenkephalin mRNA and enkephalin peptides in the Fisher 344 rat. J Mol Cell Cardiol. 1994;26:701–11.

    Article  CAS  PubMed  Google Scholar 

  14. Grandy SA, Howlett SE. Cardiac excitation-contraction coupling is altered in myocytes from aged male mice but not in cells from aged female mice. Am J Physiol. 2006;291:H2362–70.

    CAS  Google Scholar 

  15. Lim CC, Apstein CS, Colucci WS, Liao R. Impaired cell shortening and relengthening with increased pacing frequency are intrinsic to the senescent mouse cardiomyocyte. J Mol Cell Cardiol. 2000;32:2075–82.

    Article  CAS  PubMed  Google Scholar 

  16. Lim CC, Liao R, Varma N, Apstein CS. Impaired lusitropy-frequency in the aging mouse: role of Ca2+ handling proteins and effects of isoproterenol. Am J Physiol. 1999;277:H2083–90.

    CAS  PubMed  Google Scholar 

  17. Spurgeon HA, Steinbach MF, Lakatta EG. Chronic exercise prevents characteristic age-related changes in rat cardiac contraction. Am J Physiol. 1983;244:H513–8.

    CAS  PubMed  Google Scholar 

  18. Tate CA, Taffet GE, Hudson EK, Blaylock SL, McBride RP, Michael LH. Enhanced calcium uptake of cardiac sarcoplasmic reticulum in exercise-trained old rats. Am J Physiol. 1990;258:H431–5.

    CAS  PubMed  Google Scholar 

  19. Zhu X, Altschafl BA, Hajjar RJ, Valdivia HH, Schmidt U. Altered Ca2+ sparks and gating properties of ryanodine receptors in aging cardiomyocytes. Cell Calcium. 2005;37:583–91.

    Article  CAS  PubMed  Google Scholar 

  20. Dibb K, Rueckschloss U, Eisner D, Insberg G, Trafford A. Mechanisms underlying enhanced excitation contraction coupling observed in the senescent sheep myocardium. J Mol Cell Cardiol. 2004;37:1171–81.

    CAS  PubMed  Google Scholar 

  21. Mace LC, Palmer BM, Brown DA, Jew KN, Lynch JM, Glunt JM, Parsons TA, Cheung JY, Moore RL. Influence of age and run training on cardiac Na+/Ca2+ exchange. J Appl Physiol. 2003;95:1994–2003.

    CAS  PubMed  Google Scholar 

  22. Walker KE, Lakatta EG, Houser SR. Age associated changes in membrane currents in rat ventricular myocytes. Cardiovasc Res. 1993;27:1968–77.

    Article  CAS  PubMed  Google Scholar 

  23. Wei JY, Spurgeon A, Lakatta EG. Excitation-contraction in rat myocardium: alterations with adult aging. Am J Physiol. 1984;246:H784–91.

    CAS  PubMed  Google Scholar 

  24. Josephson IR, Guia A, Stern MD, Lakatta EG. Alterations in properties of L-type Ca channels in aging rat heart. J Mol Cell Cardiol. 2002;34:297–308.

    Article  CAS  PubMed  Google Scholar 

  25. Xiao RP, Spurgeon HA, O’Connor F, Lakatta EG. Age-associated changes in beta-adrenergic modulation on rat cardiac excitation-contraction coupling. J Clin Invest. 1994;94:2051–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Rosenzweig A, Sussman MA, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res. 2004;94:514–24.

    Article  CAS  PubMed  Google Scholar 

  27. Liu SJ, Wyeth RP, Melchert RB, Kennedy RH. Aging-associated changes in whole cell K+ and L-type Ca2+ currents in rat ventricular myocytes. Am J Physiol. 2000;279:H889–900.

    CAS  Google Scholar 

  28. Isenberg G, Borschke B, Rueckschloss U. Ca2+ transients in cardiomyocytes from senescent mice peak late and decay slowly. Cell Calcium. 2003;34:271–80.

    Article  CAS  PubMed  Google Scholar 

  29. Janczewski AM, Spurgeon HA, Lakatta EG. Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation. J Mol Cell Cardiol. 2002;34:641–8.

    Article  CAS  PubMed  Google Scholar 

  30. Bito V, Heinzel FR, Biesmans L, Antoons G, Sipido KR. Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: alterations during cardiac remodeling. Cardiovasc Res. 2008;77:315–24.

    Article  CAS  PubMed  Google Scholar 

  31. Bassani RA. Transient outward potassium current and Ca2+ homeostasis in the heart: beyond the action potential. Braz J Med Biol Res. 2006;39:393–403.

    Article  CAS  PubMed  Google Scholar 

  32. Froehlich JP, Lakatta EG, Beard E, Spurgeon HA, Weisfeldt ML, Gerstenblith G. Studies of sarcoplasmic reticulum function and contraction duration in young and aged rat myocardium. J Mol Cell Cardiol. 1978;10:427–38.

    Article  CAS  PubMed  Google Scholar 

  33. Kaplan P, Jurkovicova D, Babusikova E, Hudecova S, Racay P, Sirova M, Lehotsky J, Drgova A, Dobrota D, Krizanova O. Effect of aging on the expression of intracellular Ca2+ transport proteins in a rat heart. Mol Cell Biochem. 2007;301:219–26.

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt U, del Monte F, Miyamoto MI, Matsui T, Gwathmey JK, Rosenzweig A, Hajjar RJ. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca2+-ATPase. Circulation. 2000;101:790–6.

    Article  CAS  PubMed  Google Scholar 

  35. Taffet GE, Tate CA. CaATPase content is lower in cardiac sarcoplasmic reticulum isolated from old rats. Am J Physiol. 1993;264:H1609–14.

    CAS  PubMed  Google Scholar 

  36. Xu A, Narayanan N. Effects of aging on sarcoplasmic reticulum Ca2+-cycling proteins and their phosphorylation in rat myocardium. Am J Physiol. 1998;275:H2087–94.

    CAS  PubMed  Google Scholar 

  37. Jiang MT, Moffat MP, Narayanan N. Age-related alterations in the phosphorylation of sarcoplasmic reticulum and myofibrillar proteins and diminished contractile response to isoproterenol in intact rat ventricle. Circ Res. 1993;72:102–11.

    Article  CAS  PubMed  Google Scholar 

  38. Xu A, Hawkins C, Narayanan N. Phosphorylation and activation of the Ca2+-ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 1993;268:8394–7.

    CAS  PubMed  Google Scholar 

  39. Assayag P, Charlemagne D, Marty I, de Leiris J, Lompre AM, Boucher F, Valere PE, Lortet S, Swynghedauw B, Besse S. Effects of sustained low-flow ischemia on myocardial function and calcium-regulating proteins in adult and senescent rat hearts. Cardiovasc Res. 1998;38:169–80.

    Article  CAS  PubMed  Google Scholar 

  40. Slack JP, Grupp IL, Dash R, Holder D, Schmidt A, Gerst MJ, Tamura T, Tilgmann C, James PF, Johnson R, Gerdes AM, Kranias EG. The enhanced contractility of the phospholamban-deficient mouse heart persists with aging. J Mol Cell Cardiol. 2001;33:1031–40.

    Article  CAS  PubMed  Google Scholar 

  41. MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol. 2003;4:566–77.

    Article  CAS  PubMed  Google Scholar 

  42. del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ. Targeting phospholamban by gene transfer in human heart failure. Circulation. 2002;105:904–7.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Armand A-S, De Windt LJ. Calcium cycling in heart failure: how the fast became too furious. Cardiovasc Res. 2004;62:439–41.

    Article  CAS  PubMed  Google Scholar 

  44. Sipido KR, Eisner D. Something old, something new: changing views on the cellular mechanisms of heart failure. Cardiovasc Res. 2005;68:167–74.

    Article  CAS  PubMed  Google Scholar 

  45. Howlett SE, Grandy SA, Ferrier GR. Calcium spark properties in ventricular myocytes are altered in aged mice. Am J Physiol. 2006;290:H1566–74.

    CAS  Google Scholar 

  46. Hano O, Bogdanov KY, Sakai M, Danziger RG, Spurgeon HA, Lakatta EG. Reduced threshold for myocardial cell calcium intolerance in the rat heart with aging. Am J Physiol. 1995;269:H1607–12.

    CAS  PubMed  Google Scholar 

  47. Lakatta EG. Functional implications of spontaneous sarcoplasmic reticulum Ca2+ release in the heart. Cardiovasc Res. 1992;26:193–214.

    Article  CAS  PubMed  Google Scholar 

  48. Marks AR. Cardiac intracellular calcium release channels: role in heart failure. Circ Res. 2000;87:8–11.

    Article  CAS  PubMed  Google Scholar 

  49. Guo T, Zhang T, Mestril R, Bers DM. Ca/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res. 2006;99:398–406.

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Kranias EG, Mignery GA, Bers DM. Protein kinase a phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circ Res. 2002;90:309–16.

    Article  CAS  PubMed  Google Scholar 

  51. Li Q, Wu S, Li S-Y, Lopez FL, Du M, Kajstura J, Anversa P, Ren J. Cardiac-specific overexpression of insulin-like growth factor 1 attenuates aging-associated cardiac diastolic contractile dysfunction and protein damage. Am J Physiol. 2007;292:H1398–403.

    Article  CAS  Google Scholar 

  52. Janapati V, Wu A, Davis N, Derrico CA, Levengood J, Schummers J, Colvin RA. Post-transcriptional regulation of the Na+/Ca2+ exchanger in aging rat heart. Mech Ageing Dev. 1995;84:195–208.

    Article  CAS  PubMed  Google Scholar 

  53. Heyliger C, Prakash A, McNeill J. Alterations in membrane Na+–Ca2+ exchange in the aging myocardium. Age. 1988;1988:1–6.

    Article  Google Scholar 

  54. Frolkis VV, Frolkis RA, Mkhitarian LS, Shevchuk VG, Fraifeld VE, Vakulenko LG, Syrovy I. Contractile function and Ca2+ transport system of myocardium in ageing. Gerontology. 1988;34:64–74.

    Article  CAS  PubMed  Google Scholar 

  55. Abete P, Ferrara N, Cioppa A, Ferrara P, Bianco S, Calabrese C, Napoli C, Rengo F. The role of aging on the control of contractile force by Na+–Ca2+ exchange in rat papillary muscle. J Gerontol A Biol Sci Med Sci. 1996;51:M251–9.

    Article  CAS  PubMed  Google Scholar 

  56. Schmidt U, Zhu X, Lebeche D, Huq F, Guerrero JL, Hajjar RJ. In vivo gene transfer of parvalbumin improves diastolic function in aged rat hearts. Cardiovasc Res. 2005;66:318–23.

    Article  CAS  PubMed  Google Scholar 

  57. Xiao R-P, Tomhave ED, Wang DJ, Ji X, Boluyt MO, Cheng H, Lakatta EG, Koch WJ. Age-associated reductions in cardiac β1- and β2-adrenoceptor responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest. 1998;101:1273–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Sakai M, Danziger RS, Staddon JM, Lakatta EG, Hansford RG. Decrease with senescence in the norepinephrine-induced phosphorylation of myofilament proteins in isolated rat cardiac myocytes. J Mol Cell Cardiol. 1989;21:1327–36.

    Article  CAS  PubMed  Google Scholar 

  59. Lakatta EG, Sollott SJ, Pepe S. The old heart: operating on the edge. In: Bock G, Goode JA, editors. Ageing vulnerability: causes and interventions, Novartis Foundation Symposium, vol. 235. New York, NY: Wiley; 2001. p. 172–201.

    Chapter  Google Scholar 

  60. Brenner DA, Apstein CS, Saupe KW. Exercise training attenuates age-associated diastolic dysfunction in rats. Circulation. 2001;104:221–6.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang SJ, Zhou YY, Xiao RP, et al. Age-associated reduction in recovery of the equilibrium state of myocyte length during reduced interstimulus intervals at higher stimulation rates. Biophys J. 2000;78:227A (Abstract).

    Article  Google Scholar 

  62. Pepe S, Tsuchiya N, Lakatta EG, Hansford RG. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol. 1999;276:H149–58.

    CAS  PubMed  Google Scholar 

  63. Lucas D, Sweda L. Cardiac reperfusion injury, aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci USA. 1998;95:510–4.

    Article  CAS  PubMed  Google Scholar 

  64. Van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callendere M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Luscher TF. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med. 2000;192:1731–43.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Anversa P, Rota M, Urbanek K, Hosoda T, Sonnenblick EH, Leri A, Kajstura J, Bolli R. Myocardial aging-a stem cell problem. Basic Res Cardiol. 2005;100:482–93.

    Article  CAS  PubMed  Google Scholar 

  66. Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B, Frustaci A, Leri A, Maseri A, Anversa P. Senescence and death of primitive cells and myocytes leads to premature cardiac aging and heart failure. Circ Res. 2003;93:604–13.

    Article  CAS  PubMed  Google Scholar 

  67. Gonzalez A, Rota M, Nurzynska D, Misao Y, Tillmanns J, Ojaimi C, Padin-Iruegas ME, Muller P, Esposito G, Bearzi C, Vitale S, Dawn B, Anganalmath SK, Baker M, Hintze TH, Bolli R, Urbanek K, Hosoda T, Anversa P, Kajstura J, Leri A. Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res. 2008;102:597–606.

    Article  CAS  PubMed  Google Scholar 

  68. Kajstura J, Urbanek K, Rota M, Bearzi C, Hosoda T, Bolli R, Anversa P, Leri A. Cardiac stem cells and myocardial disease. J Mol Cell Cardiol. 2008;45:505–13.

    Article  CAS  PubMed  Google Scholar 

  69. Rota M, Hosoda T, De Angelis A, Arcarese ML, Esposito G, Rizzi R, Tillmanns J, Tugal D, Musso E, Rimoldi O, Bearzi C, Urbanek K, Anversa P, Leri A, Kajstura J. The young mouse heart is composed of myocytes heterogeneous in age and function. Circ Res. 2007;101:387–99.

    Article  CAS  PubMed  Google Scholar 

  70. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kajstura J, Rota M, Cappetta D, Ogorek B, Arranto C, Bai Y, Ferreira-Martins J, Signore S, Sanada F, Matsuda A, Kostyla J, Caballero M-V, Fiorini C, D’Alessandro DA, Michler RE, del Monte F, Hosoda T, Perrella MA, Leri A, Buchholz BA, Loscalzo J, Anversa P. Cardiomyogenesis in the aging and failing human heart. Circulation. 2012;126:1869–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward G. Lakatta MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakatta, E.G., Spurgeon, H.A., Janczewski, A.M. (2014). Changes in the Heart That Accompany Advancing Age: Humans to Molecules. In: Jugdutt, B. (eds) Aging and Heart Failure. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0268-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0268-2_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0267-5

  • Online ISBN: 978-1-4939-0268-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics