Skip to main content

NSR–SCR Combined Systems: Production and Use of Ammonia

  • Chapter
  • First Online:
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts

Abstract

This chapter gives a critical overview of the recent advances in NOx abatement in excess of oxygen based on the combination of the NOx storage-reduction (NSR) and Selective Catalytic Reduction (SCR) processes. Ammonia may be produced during the regeneration step of NSR catalyst, by the direct reaction (NOx + H2) or/and the isocyanate route. Recent literature highlights that the ammonia production rate is higher than the ammonia reaction rate with the remaining NOx in order to form N2. In order to optimize the use of the in situ produced ammonia, a catalyst dedicated to the NOx–SCR by NH3 can be added. Zeolites are the main studied materials for this application. Catalytic reduction of NOx by NH3 relates a complex mechanism, in which the nuclearity of the active sites is still an open question. Over zeolites, the NO to NO2 oxidation step is reported as the rate-determining step of the SCR reaction, even if the first step of the reaction is ammonia adsorption on zeolite Brønsted acid sites. Thus, the addition of a NH3–SCR material to the NSR catalyst is a possible way to increase the global NOx abatement and maximize the N2 selectivity, together with the prevention of the ammonia slip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Takeshima S, Tanaka T, Iguchi S, Araki Y, Hirota S, Oda T, Murakami F (1995) Exhaust purification device of internal combustion engine. US Patent 5,437,153 (Aug. 1, 1995)

    Google Scholar 

  2. Goto M, Iguchi S, Katoh K, Kihara T (1995) Exhaust gas purification device for an engine. US Patent 5,472,673 (Dec.5, 1995)

    Google Scholar 

  3. Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K (1996) The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catal. Today 27:63–69

    Google Scholar 

  4. Kobayashi T, Yamada T, Kayano K (1997) Study of NOx Trap Reaction by Thermodynamic Calculation. SAE Technical Papers 970745:63

    Google Scholar 

  5. Matsumoto S, (2000) Catalytic reduction of nitrogen oxides in automotive exhaust containing excess oxygen by NOx storage-reduction catalyst. Cattech 4:102–109

    Google Scholar 

  6. Roy S, Baiker A (2009) NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance. Chem. Rev.109:4054–4091

    Google Scholar 

  7. Kwak JH, Kim DH, Szanyi J, Peden CHF (2008) Excellent sulfur resistance of Pt/BaO/CeO2 lean NOx trap catalysts. Applied Catal. B 84:545–551

    Google Scholar 

  8. Corbos EC, Elbouazzaoui S., Courtois X, Bion N, Marecot P, Duprez D (2007) NOx storage capacity, SO2 resistance and regeneration of Pt/(Ba)/CeZr model catalysts for NOx-trap system. Topics in Catalysis 42–43:9–13

    Google Scholar 

  9. Toops TJ, Smith DB, Epling WS, Parks JE, Partridge WP (2005) Quantified NOx adsorption on Pt/K/gamma-Al 2 O 3 and the effects of CO 2 and H 2 O. Applied Catal. B 58:255–264

    Google Scholar 

  10. Lesage T, Saussey J, Malo S, Hervieu M, Hedouin C, Blanchard G, Daturi M (2007) Operando FTIR study of NOx storage over a Pt/K/Mn/Al 2 O 3 -CeO 2 catalyst. Applied Catal. B 72:166–177

    Google Scholar 

  11. Szailer T, Kwak JH, Kim DH, Hanson JC, Peden CHF, Szanyi J (2006) Reduction of stored NOx on Pt/Al 2 O 3 and Pt/BaO/Al 2 O 3 catalysts with H 2 and CO. J. Catal. 239:51–64

    Google Scholar 

  12. Nova I, Lietti L, Forzatti P, Prinetto F, Ghiotti G (2010) Experimental investigation of the reduction of NOx species by CO and H 2 over Pt–Ba/Al 2 O 3 lean NOx trap systems. Catal. Today 151:330–337

    Google Scholar 

  13. Kočí P, Plát F, Štěpánek J, Bártová Š, Marek M, Kubíček M, Schmeißer V, Chatterjee D, Weibel M (2009) Global kinetic model for the regeneration of NOx storage catalyst with CO, H 2 and C 3 H6 in the presence of CO 2 and H 2 O. Catal. Today 147:257–264

    Google Scholar 

  14. Masdrag L, Courtois X, Can F, Rohart E, Blanchard G, Marecot P, Duprez D (2012) Understanding the role C3H6, CO and H2 on efficiency and selectivity of NOx Storage 41 Reduction (NSR) process: Activity during the lean period. Catal. Today 189:70–76

    Google Scholar 

  15. Masdrag L, Courtois X, Can F, Duprez D. Effect of reducing agents (C3H6, CO, H2) on the NOx conversion and N2O–NH3 selectivities during representative lean/rich cycles over platinum-based model NSR catalyst. Submitted

    Google Scholar 

  16. Flura A, Can F, Courtois X, Royer S, Duprez D (2012) Silver supported over high-surface-area zinc aluminate spinel as an active material in low-temperature SCR of NO with ethanol.Applied Catal. B 126:275–289

    Google Scholar 

  17. Castoldi L, Lietti L, Forzatti P, Morandi S, Ghiotti G, Vindigni F (2010) The NOx storage-reduction on PtK/Al2O3 Lean NOx Trap catalyst. J. Catal. 276:335–350

    Google Scholar 

  18. Castoldi L, Nova I, Lietti L, Forzatti P (2004) Study of the effect of Ba loading for catalytic activity of Pt–Ba/Al2O3 model catalysts. Catal. Today 96:43–52

    Google Scholar 

  19. Artioli N, Matarrese R, Castoldi L, Lietti L, Forzatti P (2011) Effect of soot on the storage-reduction performances of PtBa/Al2O3 LNT catalyst. Catal. Today 169:36–44

    Google Scholar 

  20. Pereda-Ayo B, González-Velasco JR, Burch R, Hardacre C, Chansai S (2012) Regeneration mechanism of a Lean NOx Trap (LNT) catalyst in the presence of NO investigated using isotope labelling techniques. J. Catal., 285:177–186

    Google Scholar 

  21. Frank B, Emig G, Renken A (1998) Kinetics and mechanism of the reduction of nitric oxides by H2 under lean-burn conditions on a Pt–Mo–Co/α-Al2O3 catalyst. Appl. Catal. B. 19:45–57

    Google Scholar 

  22. Clayton RD, Harold MP, Balakotaiah V (2008) NOx storage and reduction with H2 on Pt/BaO/Al2O3 monolith: Spatio-temporal resolution of product distribution. Appl. Catal. B. 84:616–630

    Google Scholar 

  23. Breen JP, Burch R, Fontaine-Gautrelet C, Hardacre C, Rioche C (2008) Insight into the key aspects of the regeneration process in the NOx storage reduction (NSR) reaction probed using fast transient kinetics coupled with isotopically labelled 15NO over Pt and Rh-containing Ba/Al2O3 catalysts. Appl. Catal. B. 81:150–159

    Google Scholar 

  24. Bhatia D, Harold MP, Balakotaiah V (2010) Modeling the effect of Pt dispersion and temperature during anaerobic regeneration of a lean NOx trap catalyst, Catal. Today 151:314–329

    Google Scholar 

  25. Corbos EC, Courtois X, Can F, Marécot P, Duprez D (2008) NOx storage properties of Pt/Ba/Al model catalysts prepared by different methods: Beneficial effects of a N2 pre-treatment before hydrothermal aging. Appl. Catal. B. 84:514–523

    Google Scholar 

  26. Clayton RD, Harold MP, Balakotaiah V (2008) Selective catalytic reduction of NO by H2 in O2 on Pt/BaO/Al2O3 monolith NOx storage catalysts. Appl. Catal. B 81:161–181

    Google Scholar 

  27. Pereda-Ayo B, Duraiswami D, González-Marcos JA, González-Velasco JR (2011) Performance of NOx storage–reduction catalyst in the temperature–reductant concentration domain by response surface methodology. Chem. Eng. J. 169:58–67

    Google Scholar 

  28. Le Phuc N, Courtois X, Can F, Royer S, Marecot P, Duprez D (2011) NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO(Fe, Mn, Ce)/Al2O3 model catalysts. Part I: Influence of Fe and Mn addition. Appl. Catal. B 102:353–361

    Google Scholar 

  29. Le Phuc N, Courtois X, Can F, Royer S, Marecot P, Duprez D (2011) NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO(Fe, Mn, Ce)/Al2O3 model catalysts. Part II: Influence of Ce and Mn–Ce addition. Appl. Catal. B 102:362–371

    Google Scholar 

  30. Choi JS, Partridge WP, Pihl JA, Daw CS (2008) Sulfur and temperature effects on the spatial distribution of reactions inside a lean NOx trap and resulting changes in global performance. Catal. Today 136:173–182

    Google Scholar 

  31. Nova I, Lietti L, Forzatti P (2008) Mechanistic aspects of the reduction of stored NOx over Pt–Ba/Al2O3 lean NOx trap systems. Catal. Today 136:128–135

    Google Scholar 

  32. Lietti L, Nova I, Forzatti P (2008) Role of ammonia in the reduction by hydrogen of NOx stored over Pt–Ba/Al2O3 lean NOx trap catalysts. J. Catal. 257:270–282

    Google Scholar 

  33. Lindholm A, Currier NW, Fridell E, Yezerets A, Olsson L (2007) NOx storage and reduction over Pt based catalysts with hydrogen as the reducing agent: Influence of H2O and CO2. Appl. Catal. B. 75:78–87

    Google Scholar 

  34. Le Phuc N, Courtois X, Can F, Berland S, Royer S, Marecot P, Duprez D (2011) A study of the ammonia selectivity on Pt/BaO/Al2O3 model catalyst during the NOx storage and reduction process. Catal. Today 176:424–428

    Google Scholar 

  35. Joubert E, Courtois X, Marecot P, Canaff C, Duprez D (2006) The chemistry of DeNOx reactions over Pt/Al2O3: The oxime route to N2 or N2O. J. Catal. 243: 252–262

    Google Scholar 

  36. Chen HY, Voskoboinikov T, Sachtler WMH (1999) Reaction Intermediates in the Selective Catalytic Reduction of NOx over Fe/ZSM-5. J. Catal. 186:91–99

    Google Scholar 

  37. Larson RS, Pihl JA, Chakravarthy VK, Toops TJ, Daw CS (2008) Microkinetic modeling of lean NOx trap chemistry under reducing conditions. Catal. Today 136:104–120

    Google Scholar 

  38. Le Phuc N, Corbos EC, Courtois X, Can F, Marecot P,.Duprez D (2009) NOx storage and reduction properties of Pt/CexZr1−xO2 mixed oxides: Sulfur resistance and regeneration, and ammonia formation. Appl. Catal. B. 93:12–21

    Google Scholar 

  39. Kinugasa Y, Igarashi K, Itou T, Suzuki N, Yaegashi T, Tanaka T (1998) Device for purifying an exhaust gas of an engine. US Patent 5782087 (Jul. 21, 1998)

    Google Scholar 

  40. Kinugasa Y, Itou T, Hoshi K, Suzuki N, Yaegashi T, Igarashi K (1999) Device for purifying exhaust gas from engine. US Patent 5964088 (Oct. 12, 1999)

    Google Scholar 

  41. Kinugasa Y, Igarashi K, Itou T, Suzuki N, Yaegashi T, Takeuchi K (2000) Metho adsprobedd and device for purifying exhaust gas from engine. US Patent 6047542 (April 11, 2000)

    Google Scholar 

  42. Kinugasa Y, Igarashi K, Itou T, Suzuki N, Yaegashi T, Tanaka T, Miyoshi N (2000) Device for purifying exhaust gas from an internal combustion engine. US Patent, 6119452 (Sept. 19, 2000)

    Google Scholar 

  43. Sakurai K (2011) Exhaust purifying system for internal combustion engine. US Patent Appl. 2011/0138783 A1 (June 16, 2011)

    Google Scholar 

  44. Sakurai K, Miyashita S, Katumata Y (2011) Exhaust purifying system for internal combustion engine. US Patent Appl. 2011/0214417 A1 (Sep. 8, 2011)

    Google Scholar 

  45. Guenther J, Konrad B, Krutzsch B, Nolte A, Voigtlaender D, Weibel M, Wenninger G (2002) Exhaust gas purification process and apparatus with internal generation of ammonia for reducing nitrogen oxide. US Patent 6338244 B1 (Jan. 15, 2002)

    Google Scholar 

  46. Gandhi HS, Cavatalo JV, Hammerle RH, Chen Y (2004) Catalyst system for NOx and NH3 emission. US Patent Appl. 2004/0076565 A1 (Apr. 22, 2004)

    Google Scholar 

  47. Gandhi HS, Cavatalo JV, Hammerle RH, Chen Y (2008) Catalyst system for NOx and NH3 emission. US Patent 7332135 (Feb. 19, 2008)

    Google Scholar 

  48. Chigapov A., Carberry B, Ukropec R, LNT and SCR catalysts for combined LNT-SCR applications. Patent EP 2 481 473 A2 and EP 2 481 473 A3 (26 Jan. 2011)

    Google Scholar 

  49. Li Y, Deeba M, Dettling JC (2005) Emissions treatment system with NSR and SCR catalysts. Patent WO 2005/047663 A3 (26 May 2005)

    Google Scholar 

  50. Furbeck H, Koermer G. S, Moini A, Castellano CR (2008) Catalyst, method for its prepration and system to reduce NOx in an exhaust gas stream. Patent WO 2008/036797 A1 (27 March 2008)

    Google Scholar 

  51. Wan CZ, Zheng X, Stiebels S, Wendt C, Boorse SR (2010) Emissions treatment system with ammonia-generating and SCR catalyst. Patent WO 2010/114873 A3 (7 October 2010)

    Google Scholar 

  52. Li Y, Deeba M, Dettling JC, Patchett JA, Roth SA, Emission treatment system with NSR and SCR catalysts, Patent US 7919051B2 (5 April 2011)

    Google Scholar 

  53. Chen HY, Weigert E, Fedeyko J, Cox J, Andersen P (2010) Advanced Catalysts for Combined (NAC + SCR) Emission Control Systems. SAE Technical Paper 2010-01-0302

    Google Scholar 

  54. Twigg MV (2011) Catalytic control of emissions from cars. Catal. Today 163:33–41

    Google Scholar 

  55. Hu H. Stover Th. (2006) Hybrid catalyst system for exhaust emissions reduction, Patent WO 2006/008625 A1 (26 Jan. 2006)

    Google Scholar 

  56. Hu H. Stover Th. (2007) Hybrid catalyst system for exhaust emissions reduction, Patent US 7213395 B2 (8 May 2007)

    Google Scholar 

  57. Hu H, Mc Carthy E. Jr, Yan Y (2007) Thermal management of hybrid LNT/SCR aftertreatment during desulfation, Patent US 7251929 B2 (7 Aug. 2007)

    Google Scholar 

  58. Hu H. Stover Th. (2010) Hybrid catalyst system for exhaust emissions reduction, Patent US 7650746 B2 (26 Jan. 2010)

    Google Scholar 

  59. Mc Carthy E. Jr, Bailey OH (2011) LNT-SCR system optimized for thermal gradient, Patent US 7950226 B2 (31 May 2011)

    Google Scholar 

  60. Ginter DM, Mc Carthy E. Jr (2011) Optimized rhodium usage in LNT-SCR system, Patent US 8069654 B2 (6 Dec. 2011)

    Google Scholar 

  61. T. Nakatsuji, M. Matsubara, J. Rouistenmäki, N. Sato, H. Ohno (2007) A NOx reduction system using ammonia-storage selective catalytic reduction in rich/lean excursions, Appl. Catal. B: Environmental 77: 190–201

    Google Scholar 

  62. H. Shinjoh, N. Takahashi, K. Yokota (2007) Synergic effect of Pd/gamma-alumina and Cu/ZSM-5 on the performance of NOx storage reduction catalyst, Topics Catal., 42-43: 215–219

    Google Scholar 

  63. E.C. Corbos, M. Haneda, X. Courtois, P. Marecot, D. Duprez (2008) H. Hamada, Cooperative effect of Pt–Rh/Ba/Al and CuZSM-5 catalysts for NOx reduction during periodic lean-rich atmosphere, Catal. Comm., 10: 137–141

    Google Scholar 

  64. E.C. Corbos, M. Haneda, X. Courtois, P. Marecot, D. Duprez (2009) H. Hamada, NOx abatement for lean-burn engines under lean–rich atmosphere over mixed NSR-SCR catalysts: Influences of the addition of a SCR catalyst and of the operational conditions, Appl. Catal. A: General, 365: 187–193

    Google Scholar 

  65. J. Wang, Y. Ji, Z. He, M. Crocker, M. Dearth, R. W. McCabe (2012) A non-NH3 pathway for NOx conversion in coupled LNT-SCR systems, Appl. Catal. B: Environmental 111–112: 562–570

    Google Scholar 

  66. J. Theis, J. Ura, R. McCabe (2010) The Effects of Sulfur Poisoning and Desulfation Temperature on the NOx Conversion of LNT+SCR Systems for Diesel Applications, SAE Technical Papers, 2010-01-300 & SAE Int. J. Fuels Lubr. 3 (2010) 1–15, doi:10.4271/2010-01-0300

  67. L. Xu, R. W. McCabe, LNT + in situ SCR catalyst system for diesel emissions control, Catal. Today 184 (2012) 83–94

    Google Scholar 

  68. U. De La Torre, B. Pereda-Ayo, J. R. González-Velasco, Cu-zeolite NH3–SCR catalysts for NOx removal in the combined NSR–SCR technology, Chem. Eng. J. in press, doi:10.1016/j.cej.2012.06.092

  69. Bonzi R, Lietti L, Castoldi L, Forzatti P (2010) NOx removal over a double-bed NSR-SCR reactor configuration. Catal. Today 151:376–385

    Google Scholar 

  70. Forzatti P, Lietti L (2010) The reduction of NOx stored on LNT and combined LNT–SCR systems. Catal. Today 155:131–139

    Google Scholar 

  71. Castoldi L, Bonzi R, Lietti L, Forzatti P, Morandi S, Ghiotti G, Dzwigaj S (2011) 45 Catalytic behaviour of hybrid LNT/SCR systems: Reactivity and in situ FTIR study. J. Catal. 282:128–144

    Google Scholar 

  72. Zukerman R, Vradman L, Herskowitz M, Liverts E, Liverts M, Massner A, Weibel M, Brilhac JF, Blakeman PG, Peace LJ (2009) Modeling and simulation of a smart catalytic converter combining NOx storage, ammonia production and SCR. Chem. Eng. J. 155:419–426

    Google Scholar 

  73. Weibel M, Waldbüßer N, Wunsch R, Chatterjee D, Bandl-Konrad B, Krutzsch B (2009) A Novel Approach to Catalysis for NOx Reduction in Diesel Exhaust Gas. Top. Catal. 52:1702–1708

    Google Scholar 

  74. Chatterjee D, Kočí P, Schmeiser V, Marek M, Weibel M (2010) Modelling of NOx Storage + SCR Exhaust Gas Aftertreatment System with Internal Generation of Ammonia. SAE Technical Papers, 2010-01-0887

    Google Scholar 

  75. Chatterjee D, Kočí P, Schmeiser V, Marek M, Weibel M, Krutzsch B (2010) Modelling of a combined NOx storage and NH3-SCR catalytic system for Diesel exhaust gas aftertreatment. Catal. Today 151:395–409

    Google Scholar 

  76. Lindholm A, Sjövall H, Olsson L (2010) Reduction of NOx over a combined NSR and SCR system. Appl. Catal. B 98:112–121

    Google Scholar 

  77. Seo CK, Kim H, Choi B, Lim MT, Lee CH, Lee CB (2011) De-NOx characteristics of a combined system of LNT and SCR catalysts according to hydrothermal aging and sulfur poisoning. Catal. Today 164:507–514

    Google Scholar 

  78. Pereda-Ayo B, Duraiswami D, González-Velasco JR (2011) Control of NOx storage and reduction in NSR bed for designing combined NSR–SCR systems. Catal. Today 172:66–72

    Google Scholar 

  79. Liu Y, Harold MP, Luss D (2012) Coupled NOx storage and reduction and selective catalytic reduction using dual-layer monolithic catalysts, Appl. Catal. B 121–122:239–251

    Google Scholar 

  80. Seo CK, Kim H, Choi B, Lim MT (2011) The optimal volume of a combined system of LNT and SCR catalysts. J. Ind. Eng. Chem. 17:382–385

    Google Scholar 

  81. Kota AS, Luss D, Balakotaiah V (2012), Modeling Studies on Lean NOx Reduction by a Sequence of LNT−SCR Bricks, Ind. Eng. Chem. Res. 51:6686–6696

    Google Scholar 

  82. Sullivan JA, Keane O (2007) A combination of NOx trapping materials and urea-SCR catalysts for use in the removal of NOx from mobile diesel engines. Appl. Catal. B 70:205–214

    Google Scholar 

  83. Can F, Berland S, Royer S, Courtois X, Duprez D. Composition dependant performance of CexZr1-xO2 mixed-oxide supported WO3 catalysts for the NSR–SCR coupled process. submitted

    Google Scholar 

  84. Berland S (2011) PhD thesis, University of Poitiers. http://www2.ademe.fr/jsp/theses/these.jsp?num=2353&catid=13842

  85. Lietti L (1996) Reactivity of V2O5–WO3/TiO2 de–NOx catalysts by transient methods Appl. Catal. B 10: 281–297

    Google Scholar 

  86. Kim MK, Kim PS, Cho BK, Nam IS, Oh SH (2012) Enhanced NOx reduction and byproduct removal by (HC + OHC)/SCR over multifunctional dual-bed monolith catalyst. Catal. Today 184:95–106

    Google Scholar 

  87. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite Catalysts. Catal. Rev. 50:492–531

    Google Scholar 

  88. Koebel M, Madia G, Elsener M (2002) Selective catalytic reduction of NO and NO2 at low temperatures. Catal. Today 73:239–247

    Google Scholar 

  89. Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B (2006) NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction. Catal. Today 114:3–12

    Google Scholar 

  90. Forzatti P, Lietti L, Tronconi E (2002) Nitrogen Oxides Removal—Industrial in: I.T. Horvath (Ed.) Encyclopaedia of Catalysis, first ed., Wiley, New York, and references therein

    Google Scholar 

  91. Kato A, Matsuda S, Kamo T, Nakajima F, Kuroda H,.Narita T (1981) Reaction between nitrogen oxide (NOx) and ammonia on iron oxide-titanium oxide catalyst. J. Phys. Chem. 85:4099–4102

    Google Scholar 

  92. Apostolescu N, Geiger B, Hizbullah K, Jan MT, Kureti S, Reichert D, Schott F, Weisweiler W (2006) Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Appl. Catal. B. 62:104–114

    Google Scholar 

  93. Luo JY, Hou X, Wijayakoon P, Schmieg SJ, Li W, Epling WS (2011) Spatially resolving SCR reactions over a Fe/zeolite catalyst. Appl. Catal. B. 102:110–119

    Google Scholar 

  94. Ozkan US, Cai Y, Kumthekar MW (1994) Investigation of the Reaction Pathways in Selective Catalytic Reduction of NO with NH3 over V2O5 Catalysts: Isotopic Labeling Studies Using 18O2, 15NH3, 15NO, and 15N18O. J. Catal. 149:390–403

    Google Scholar 

  95. Odenbrand CUI, Bahamonde A, Avila P, Blanco J (1994) Kinetic study of the selective reduction of nitric oxide over vanadia—tungsta—titania/sepiolite catalyst. Appl. Catal. B. 5:117–131

    Google Scholar 

  96. Ramis G, Busca G, Bregani F, Forzatti P (1990) Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction. Appl. Catal. 64:259–278

    Google Scholar 

  97. Kiel JHA, Edelaar ACS, Prins W, van Swaaij WPM (1991) Performance of silica-supported copper oxide sorbents for SOx/NOx-removal from flue gas: II. Selective catalytic reduction of nitric oxide by ammonia. Appl. Catal. B. 1:41–60

    Google Scholar 

  98. Hsu LY, Teng H (2001) Catalytic NO reduction with NH3 over carbons modified by acid oxidation and by metal impregnation and its kinetic studies. Appl. Catal. B. 35:21–30

    Google Scholar 

  99. Lobree LJ, Hwang IC, Reimer JA, Bell AT (1999) Investigations of the State of Fe in H–ZSM-5. J. Catal. 186:242–253

    Google Scholar 

  100. Long RQ, Yang RT (2000) Characterization of Fe-ZSM-5 Catalyst for Selective Catalytic Reduction of Nitric Oxide by Ammonia. J. Catal. 194:80–90

    Google Scholar 

  101. Wallin M, Karlsson CJ, Skoglundh M, Palmqvist A. (2003) Selective catalytic reduction of NOx with NH3 over zeolite H–ZSM-5: influence of transient ammonia supply. J. Catal. 218:354–364

    Google Scholar 

  102. Busca G, Larrubia MA, Arrighi L, Ramis G (2005) Catalytic abatement of NOx: Chemical and mechanistic aspects, Catal. Today 107–108:139–148

    Google Scholar 

  103. Koebel M, Elsener M, Madia G (2001) Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperatures. Ind. Eng. Chem. Res. 40:52–59

    Google Scholar 

  104. Yeom Y, Henao J, Li M,. Sachtler WMH, Weitz E (2005) The role of NO in the mechanism of NOx reduction with ammonia over a BaNa–Y catalyst. J. Catal. 231:181–193

    Google Scholar 

  105. Ciardelli C, Nova I, Tronconi E, Chatterjee D, Burkhardt T, Weibel M (2007) NH3 SCR of NOx for diesel exhausts aftertreatment: role of NO2 in catalytic mechanism, unsteady kinetics and monolith converter modelling. Chem. Eng. Sci. 62:5001–5006

    Google Scholar 

  106. Devadas M, Kröcher O, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM-5. Appl. Catal. B. 67:187–196

    Google Scholar 

  107. Hadjiivanov K, Knözinger H, Tsyntsarski B, Dimitrov L (1999) Effect of Water on the Reduction of NOx with Propane on Fe–ZSM-5. An FTIR Mechanistic Study. Catal. Lett. 62:35–40

    Google Scholar 

  108. Lobree LJ, Hwang IC, Reimer JA, Bell AT (1999) Investigations of the State of Fe in H–ZSM-5. J. Catal. 186:242–253

    Google Scholar 

  109. Veley VH, (1993) The Conditions of Decomposition of Ammonium Nitrite, J. Am. Chem. Soc. 83:736–749

    Google Scholar 

  110. Romero Sarria F, Saussey J, Gallas JP, Marie O, Daturi M (2005) In situ and operando IR study of adsorption sites for NH4+ active species in NOx–SCR via NH3 using a Y zeolite. Stud. Surf. Sc. Catal. 158(A):821–828

    Google Scholar 

  111. Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M (2008) The chemistry of the NO/NO2–NH3 “fast” SCR reaction over Fe-ZSM-5 investigated by transient reaction analysis. J. Catal. 256:312–322

    Google Scholar 

  112. Wilken N, Wijayanti K, Kamasamudram K, Currier NW, Vedaiyan R, Yezerets A, Olsson L (2012) Mechanistic investigation of hydrothermal aging of Cu–Beta for ammonia 48 SCR, Appl. Catal. B 111–112:58–66

    Google Scholar 

  113. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL (2005) The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3–SCR reaction. Catal. Today 100:217–222

    Google Scholar 

  114. Tuenter G, Vanleeuwen WF, Snepvangers LJM (1986) Kinetics and Mechanism of the NOx Reduction with NH3 on V2O5–WO3–TiO2 Catalyst. Ind. Eng. Chem. Prod. Res. Dev. 25(4):633–636

    Google Scholar 

  115. Sun Q, Gao ZX, Chen HY, Sachtler WMH (2001) Reduction of NOx with Ammonia over Fe/MFI: Reaction Mechanism Based on Isotopic Labeling. J. Catal. 201:88–99

    Google Scholar 

  116. Long RQ, Yang RT (2002) Reaction Mechanism of Selective Catalytic Reduction of NO with NH3 over Fe–ZSM-5 Catalyst. J. Catal. 207:224–231

    Google Scholar 

  117. Long RQ, Yang RT (2001) Temperature-Programmed Desorption/Surface Reaction (TPD/TPSR) Study of Fe–Exchanged ZSM-5 for Selective Catalytic Reduction of Nitric Oxide by Ammonia. J. Catal. 198:20–28

    Google Scholar 

  118. Long RQ, Yang RT (1999) Catalytic Performance of Fe–ZSM-5 Catalysts for Selective Catalytic Reduction of Nitric Oxide by Ammonia. J. Catal. 188:332–339

    Google Scholar 

  119. Eng J, Bartholomew CH (1997) Kinetic and Mechanistic Study of NOx Reduction by NH3 over H–Form Zeolites. II. Semi-Steady-State and In Situ FTIR Studies. J. Catal. 171:27–44

    Google Scholar 

  120. Stevenson SA, Vartuli JC, Sharma SB (2002) The Effects of Steaming and Sodium Exchange on the Selective Catalytic Reduction of NO and NO2 by NH3 over HZSM-5. J. Catal., 208:106–113

    Google Scholar 

  121. Armaroli T, Simon LJ, Digne M, Montanari T, Bevilacqua M, Valtchev V, Patarin J, Busca G (2006) Effects of crystal size and Si/Al ratio on the surface properties of H–ZSM-5 zeolites. Appl. Catal. A. 306:78–84

    Google Scholar 

  122. Brandenberger S, Kröcher O, Wokaun A, Tissler A, Althoff R (2009) The role of Brønsted acidity in the selective catalytic reduction of NO with ammonia over Fe–ZSM-5. J. Catal. 268:297–306

    Google Scholar 

  123. Schwidder M, Kumar MS, Bentrup U, Pérez-Ramírez J, Brückner A, Grünert W (2008) The role of Brønsted acidity in the SCR of NO over Fe-MFI catalysts. Micro. Meso. Mater. 111:124–133

    Google Scholar 

  124. Védrine JC, Auroux A, Bolis V, Dejaifve P, Naccache C, Wierzchowski P, Derouane EG, Nagy JB, Gilson JP, van Hooff JHC, van den Berg JP, Wolthuizen J (1979) Infrared, microcalorimetric, and electron spin resonance investigations of the acidic properties of the H–ZSM-5 zeolite. J. Catal. 59:248–262

    Google Scholar 

  125. Topsøe NY, Pedersen K, Derouane EG (1981) Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites. J. Catal. 70:41–52

    Google Scholar 

  126. Brüggemann TC, Vlachos DG, Keil FJ (2011) Microkinetic modeling of the fast selective catalytic reduction of nitrogen oxide with ammonia on H–ZSM-5 based on first principles. J. Catal. 283:178–191

    Google Scholar 

  127. Colombo M, Nova I, Tronconi E (2010) A comparative study of the NH3-SCR reactions over a Cu–zeolite and a Fe–zeolite catalyst. Catal. Today 151: 223–230

    Google Scholar 

  128. Kieger S, Delahay G, Coq B, Neveu B (1999) Selective Catalytic Reduction of Nitric Oxide by Ammonia over Cu–FAU Catalysts in Oxygen-Rich Atmosphere. J. Catal. 183:267–280

    Google Scholar 

  129. Moretti G, Dossi C, Fusi A, Recchia S, Psaro R (1999) A comparison between Cu-ZSM-5, Cu–S–1 and Cu–mesoporous-silica–alumina as catalysts for NO decomposition. Appl. Catal. B20:67–73

    Google Scholar 

  130. Dossi C, Fusi A, Recchia S, Psaro R, Moretti G (1999) Cu–ZSM-5 (Si/Al=66), Cu–Fe–S–1 (Si/Fe=66) and Cu–S–1 catalysts for NO decomposition: preparation, analytical characterization and catalytic activity. Microp. Mesop. Mater. 30:165–175

    Google Scholar 

  131. Mizumoto M, Yamazoe N, Seiyama T (1978) Catalytic reduction of NO with ammonia over Cu(II) NaY. J. Catal. 55:119–128

    Google Scholar 

  132. Iwamoto M, Yahiro H, Tanda K, Mizuno N, Mine Y, Kagawa S (1991) Removal of Nitrogen Monoxide through a Novel Catalytic Process. 1. Decomposition on Excessively Copper–Ion Exchanged ZSM-5 Zeolites. J. Phys. Chem. 95(9):3727–3730

    Google Scholar 

  133. Sjövall H, Olsson L, Fridell E, Blint R.J (2006) Selective catalytic reduction of NOx with NH3 over Cu–ZSM-5—The effect of changing the gas composition. Appl. Catal. B. 64:180–188

    Google Scholar 

  134. SeO C-K, Choi B, Kim H, Lee C-H, Lee C-B (2012) Effect of ZrO2 addition on de–NOx performance of Cu–ZSM-5 for SCR catalyst. Chem Eng. J. 191:331–340

    Google Scholar 

  135. Kwak J.H, Tran D, Burton S.D, Szanyi J, Lee J-H, Peden C (2012) Effects of hydrothermal aging on NH3–SCR reaction over Cu/zeolites, J. Catal 287:203–209

    Google Scholar 

  136. Marturano P, Drozdová L, Kogelbauer A, Prins R (2000) Fe/ZSM-5 Prepared by Sublimation of FeCl3: The Structure of the Fe Species as Determined by IR, 27Al MAS NMR, and EXAFS Spectroscopy. J. Catal. 192:236–247

    Google Scholar 

  137. Battiston AA, Bitter JH, de Groot FMF, Overweg AR, Stephan O, van Bokhoven JA, Kooyman PJ, van der Spek C, Vankó G, Koningsberger DC (2003) Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM-5 obtained by chemical vapor deposition of FeCl3. J. Catal. 213:251–271

    Google Scholar 

  138. Hensen EJM, Zhu Q, Hendrix MMRM, Overweg AR, Kooyman PJ, Sychev MV, van Santen RA (2004) Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3: I. Physicochemical characterization. J. Catal. 221:560–574

    Google Scholar 

  139. Joyner R, Stockenhuber M (1999) Preparation, Characterization, and Performance of Fe−ZSM-5 Catalysts. J. Phys. Chem. B 103:5963–5976 50

    Google Scholar 

  140. Sobalik Z, Vondrova A, Tvaruskova Z, Wichterlova B (2002) Analysis of the structural parameters controlling the temperature window of the process of SCR–NOx by low paraffins over metal-exchanged zeolites. Catal. Today 75:347–351

    Google Scholar 

  141. Heinrich F, Schmidt C, Löffler E, Grünert W (2000) A highly active intra-zeolite iron site for the selective catalytic reduction of NO by isobutane. Catal. Commun. 2:317–321

    Google Scholar 

  142. Chen HY, El-Malki M, Wang X, van Santen RA, Sachtler WMH (2000) Identification of active sites and adsorption complexes in Fe/MFI catalysts for NOx reduction. J. Mol. Catal. A: Chem. 162:159–174

    Google Scholar 

  143. Brandenberger S, Kröcher O, Tissler A, Althoff R (2010) The determination of the activities of different iron species in Fe–ZSM-5 for SCR of NO by NH3 Appl. Catal. B; 95: 348–357

    Google Scholar 

  144. Malpartida I, Marie O, Bazin P, Daturi M, Jeandel X (2012) The NO/NOx ratio effect on the NH3-SCR efficiency of a commercial automotive Fe–zeolite catalyst studied by operando IR-MS. Appl. Catal. B. 113–114:52–60

    Google Scholar 

  145. Roy S, Viswanath B, Hegde MS, Madras G (2008) Low-Temperature Selective Catalytic Reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu). J. Phys. Chem. C. 112:6002–6012

    Google Scholar 

  146. Verdier S, Rohart E, Bradshaw H, Harris D et al. (2008) Acidic Zirconia Materials for Durable NH3–SCR deNOx Catalysts. SAE Technical Paper 2008-01-1022

    Google Scholar 

  147. Rohart E, Kröcher O, Casapu M, Marques R, Harris D, Jones C (2011) Acidic Zirconia Mixed Oxides for NH 3 –SCR Catalysts for PC and HD Applications. SAE Technical Paper 2011-01-1327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Can .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Can, F., Courtois, X., Duprez, D. (2014). NSR–SCR Combined Systems: Production and Use of Ammonia. In: Nova, I., Tronconi, E. (eds) Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts. Fundamental and Applied Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8071-7_19

Download citation

Publish with us

Policies and ethics