Skip to main content

Kinetics of NH3-SCR Reactions Over V2O5–WO3/TiO2 Catalyst

  • Chapter
  • First Online:
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

An extensive investigation of the chemistry, the mechanism, and the kinetics of the NO-NO2/NH3 SCR reactions for mobile applications was performed over a commercial vanadium-based catalyst. On the basis of the collected results, a Mars-Van Krevelen dynamic kinetic model was derived, which unifies the rates of the Standard and the Fast SCR into a single Redox-type approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciardelli C, Nova I, Tronconi E, Konrad B, Chatterjee D, Ecke K, Weibel M, Chemical Engineering Science (2004) 59:5301–5309

    Google Scholar 

  2. Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Chemical Communications (2004) 23:2718–271

    Google Scholar 

  3. Tronconi E, Nova I, Ciardelli C, Chatterjee D, Bandl-Konrad B, Burkhardt T, Catalysis Today (2005) 105(3-4):529–536

    Google Scholar 

  4. Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B, Catalysis Today (2006) 114(1):3–12

    Google Scholar 

  5. Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B, AIChE Journal (2006) 52(9):3222–3233

    Google Scholar 

  6. Tronconi E, Nova I, Ciardelli C, Chatterjee D, Weibel M., Journal of Catalysis (2007) 245(1):1–10

    Google Scholar 

  7. Ciardelli C, Nova I, Tronconi E, Bandl-Konrad B, Chatterjee D, Weibel M, Krutzsch B, Applied Catalysis B: Environmental (2007) 70(1-4):80–90

    Google Scholar 

  8. Nova I, Ciardelli C, Tronconi E, Chatterjee D, Weibel M, AIChE Journal (2009) 55(6) 1514–1529

    Google Scholar 

  9. Nova I, Ciardelli C, Tronconi E, Chatterjee D, Weibel M, Topics in Catalysis (2007) 42-43(1-4):43–46

    Google Scholar 

  10. Ciardelli C, Nova I, Tronconi E, Ascherfeld M, Fabinski W, Topics in Catalysis, (2007) 42-43(1-4):161–164

    Google Scholar 

  11. Tronconi E, Nova I, Colombo M, Ind. Eng. Chem. Res. (2010) 49(21):10374–10385

    Google Scholar 

  12. Lietti L, Nova I, Camurri S, Tronconi E, Forzatti P, AIChE J. (1997) 43:2559

    Google Scholar 

  13. Finlayson B, Non Linear Analysis in Chemical Engineering, (1980) McGraw-Hill, New York

    Google Scholar 

  14. Hindmarsh AC, ACM-Signum Newsletter (1980) 15:10

    Google Scholar 

  15. Donati G, Buzzi-Ferraris G, Chem. Eng. Sci., (1974) 29:1504

    Google Scholar 

  16. Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A, Appl. Catal. B: Environmental (2002) 39:181

    Google Scholar 

  17. Amiridis MD, Wachs IE, Deo G, Jehng J, Kimy DS, J. Catal. (1996) 161: 247

    Google Scholar 

  18. Busca G, Lietti L, Ramis G, Berti F, Appl. Catal. B: Environmental (1998) 18:1

    Google Scholar 

  19. Forzatti P, Lietti L, Tronconi E, Nitrogen oxides removal in Industrial. Encyclopedia of Catalysis, 2nd Ed., (2010) I.T Horvath (Ed.), John Wiley & Sons, New York

    Google Scholar 

  20. Bosch H, Janssen F, Catal. Today(1988) 2:369

    Google Scholar 

  21. Topsøe NY, Topsøe H, Dumesic JA, J. Catal. (1995) 151:226

    Google Scholar 

  22. Nova I, Lietti L, Tronconi E, Forzatti P, Chem. Eng. Sci. (2001) 56:1229

    Google Scholar 

  23. Lietti L, Nova I, Tronconi E, Forzatti P in Reaction Engineering for Pollution Prevention M.A. Abraham, R.P. Hesketh (Eds.), Elsevier Science (2000) 85–112

    Google Scholar 

  24. Nova I, Lietti L, Tronconi E, Forzatti P, Catalysis Today, (2000) 60:73–82

    Google Scholar 

  25. Topsøe NY, Dumesic JA, Topsøe H, J. Catal. (1995) 151:241

    Google Scholar 

  26. Ramis G, Yi L, Busca G, Catal. Today (1996) 28:373

    Google Scholar 

  27. Lietti L, Alemany JL, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F, Catal. Today (1996) 29:143

    Google Scholar 

  28. Amirids MD, Duevel RV, Wachs IE, Appl. Catal. B (1999) 20:111

    Google Scholar 

  29. Srnak TZ, Dumesic JA, Clausen BS, Tornquist E, Topsøe NY, J. Catal. (1991) 135:246

    Google Scholar 

  30. Roduit B, Wokaun A, Baiker A, Ind. Eng. Chem. Res (1998) 37:4577

    Google Scholar 

  31. Lietti L, Nova I, Forzatti P, Topics in Catalysis, (2000) 11/12:111–122

    Google Scholar 

  32. Willey RJ, Elridge JW, Kittrell JR, Ind. Eng. Chem. Prod. Res. Dev (1985) 24: 226

    Google Scholar 

  33. Willey RJ, Lai H, Peri JB, J. Catal. (1991) 130:319

    Google Scholar 

  34. Kapteijn F, Singoredjo L, Dekker NJJ, Moulijn JA, Ind. Eng. Chem. Res. (1993) 32:445

    Google Scholar 

  35. Koebel M, Elsener M, Chem. Eng. Sci. (1998) 53: 657

    Google Scholar 

  36. Iwasaki IM, Yamazaki K, Shinjoh H, Applied Catalysis A: General (2009) 366:84–92

    Google Scholar 

  37. Sjövall H, Blint RJ, Gopinath A, Olsson L, Industrial & Engineering Chemistry Research (2010) 49:39–52

    Google Scholar 

  38. Malmberg S, Votsmeier M, Gieshoff J, Soger N, Mussmann L, Schuler A, Drochner A, Topics in Catalysis (2007) 42–43:33–36

    Google Scholar 

  39. Valdes-Solıs T, Marban G, Fuertes AB, Appl. Catal. B. (2003) 46:261

    Google Scholar 

  40. Valdes-Solıs T, Marban G, Fuertes AB, Ind. Eng. Chem. Res. (2004) 43:2349

    Google Scholar 

  41. Wachs IE, Deo G, Weckhuysen BM, Andreini A, Vuurman MA, de Boer M, Amiridis MD, J. Catal. (1996) 161:211

    Google Scholar 

  42. Grossale A., Nova I., Tronconi E., Chatterjee, D., Weibel, M., J.Catal. (2008) 256:312-322

    Google Scholar 

  43. Yeom Y, Henao J, Li MJ, Sachtler WMH, Weitz E, J. Catal. (2005) 231:181–193

    Google Scholar 

  44. Despres J, Koebel M, Kröcker O, Elsener M, Wokaun A, Appl. Cat. B: Environmental. (2003) 43:389–395

    Google Scholar 

  45. Apostolescu N, Schroder T, Kureti S, App.Cat. B: Environmental (2004) 51:43–50

    Google Scholar 

  46. Grossale A, Nova I, Tronconi E, Cat. Today (2007) 136:18–27

    Google Scholar 

Download references

Acknowledgments

Daimler AG is gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Nova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nova, I., Tronconi, E. (2014). Kinetics of NH3-SCR Reactions Over V2O5–WO3/TiO2 Catalyst. In: Nova, I., Tronconi, E. (eds) Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts. Fundamental and Applied Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8071-7_10

Download citation

Publish with us

Policies and ethics