Skip to main content

Electroporation-Mediated Administration of Candidate DNA Vaccines Against HIV-1

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1121))

Abstract

Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barre-Sinoussi F, Chermann JC, Rey F et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Article  CAS  PubMed  Google Scholar 

  2. Gallo RC, Salahuddin SZ, Popovic M et al (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224:500–503

    Article  CAS  PubMed  Google Scholar 

  3. UNAIDS (2012) Report on the Global AIDS Epidemic. ISBN 978-92-9173-996-7

    Google Scholar 

  4. Miller CJ, Li Q, Abel K et al (2005) Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J Virol 79:9217–9227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Spira AI, Marx PA, Patterson BK et al (1996) Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med 183:215–225

    Article  CAS  PubMed  Google Scholar 

  6. Haase AT (2010) Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464:217–223

    Article  CAS  PubMed  Google Scholar 

  7. Gaschen B, Taylor J, Yusim K et al (2002) Diversity considerations in HIV-1 vaccine selection. Science 296:2354–2360

    Article  CAS  PubMed  Google Scholar 

  8. Letourneau S, Im EJ, Mashishi T et al (2007) Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One 2:e984

    Article  PubMed Central  PubMed  Google Scholar 

  9. Liao HX, Sutherland LL, Xia SM et al (2006) A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses. Virology 353:268–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gao F, Korber BT, Weaver E, Liao HX, Hahn BH, Haynes BF (2004) Centralized immunogens as a vaccine strategy to overcome HIV-1 diversity. Expert Rev Vaccines 3:S161–S168

    Article  CAS  PubMed  Google Scholar 

  11. Barouch DH, O'Brien KL, Simmons NL et al (2010) Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat Med 16:319–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Santra S, Liao HX, Zhang R et al (2010) Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse hiv strains in monkeys. Nat Med 16:324–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ndhlovu ZM, Piechocka-Trocha A, Vine S et al (2011) Mosaic HIV-1 Gag antigens can be processed and presented to human HIV-specific CD8+ T cells. J Immunol 186:6914–6924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jiang X, Burke V, Totrov M et al (2010) Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 17:955–961

    Article  CAS  PubMed  Google Scholar 

  15. Almond D, Kimura T, Kong X, Swetnam J, Zolla-Pazner S, Cardozo T (2010) Structural conservation predominates over sequence variability in the crown of HIV type 1's V3 loop. AIDS Res Hum Retroviruses 26:717–723

    Article  CAS  PubMed  Google Scholar 

  16. Schief WR, Ban YE, Stamatatos L (2009) Challenges for structure-based HIV vaccine design. Curr Opin HIV AIDS 4:431–440

    Article  PubMed  Google Scholar 

  17. Pejchal R, Doores KJ, Walker LM et al (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kunert R, Wolbank S, Stiegler G, Weik R, Katinger H (2004) Characterization of molecular features, antigen-binding, and in vitro properties of IgG and IgM variants of 4E10, an anti-HIV type 1 neutralizing monoclonal antibody. AIDS Res Hum Retroviruses 20:755–762

    Article  CAS  PubMed  Google Scholar 

  19. Alam SM, McAdams M, Boren D et al (2007) The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J Immunol 178:4424–4435

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Deeks SG, Schweighardt B, Wrin T et al (2006) Neutralizing antibody responses against autologous and heterologous viruses in acute versus chronic human immunodeficiency virus (HIV) infection: evidence for a constraint on the ability of hiv to completely evade neutralizing antibody responses. J Virol 80:6155–6164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Dhillon AK, Donners H, Pantophlet R et al (2007) Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. J Virol 81:6548–6562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Doria-Rose NA, Klein RM, Manion MM et al (2009) Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J Virol 83:188–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Binley JM, Lybarger EA, Crooks ET et al (2008) Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol 82:11651–11668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gray ES, Taylor N, Wycuff D et al (2009) Antibody specificities associated with neutralization breadth in plasma from human immunodeficiency virus type 1 subtype C-infected blood donors. J Virol 83:8925–8937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Simek MD, Rida W, Priddy FH et al (2009) Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J Virol 83:7337–7348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sather DN, Armann J, Ching LK et al (2009) Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J Virol 83:757–769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mouquet H, Scheid JF, Zoller MJ et al (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:591–595

    Google Scholar 

  28. Liao HX, Chen X, Munshaw S et al (2011) Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J Exp Med 208:2237–2249

    Google Scholar 

  29. Haynes BF, Fleming J, St Clair EW et al (2005) Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308:1906–1908

    Article  CAS  PubMed  Google Scholar 

  30. Matyas GR, Beck Z, Karasavvas N, Alving CR (2009) Lipid binding properties of 4E10, 2F5, and WR304 monoclonal antibodies that neutralize HIV-1. Biochim Biophys Acta 1788:660–665

    Article  CAS  PubMed  Google Scholar 

  31. Mouquet H, Warncke M, Scheid JF, Seaman MS, Nussenzweig MC (2012) Enhanced HIV-1 neutralization by antibody heteroligation. Proc Natl Acad Sci U S A 109:875–880

    Google Scholar 

  32. Ulmer JB, Donnelly JJ, Parker SE et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749

    Article  CAS  PubMed  Google Scholar 

  33. Donnelly JJ, Wahren B, Liu MA (2005) DNA vaccines: progress and challenges. J Immunol 175:633–639

    CAS  PubMed  Google Scholar 

  34. Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8:108–120

    Article  CAS  PubMed  Google Scholar 

  35. Wang R, Doolan DL, Le TP et al (1998) Induction of antigen-specific cytotoxic t lymphocytes in humans by a malaria DNA vaccine. Science 282:476–480

    Article  CAS  PubMed  Google Scholar 

  36. Rottinghaus ST, Poland GA, Jacobson RM, Barr LJ, Roy MJ (2003) Hepatitis B DNA vaccine induces protective antibody responses in human non-responders to conventional vaccination. Vaccine 21:4604–4608

    Article  CAS  PubMed  Google Scholar 

  37. Catanzaro AT, Roederer M, Koup RA et al (2007) Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine 25:4085–4092

    Article  CAS  PubMed  Google Scholar 

  38. Graham BS, Koup RA, Roederer M et al (2006) Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis 194:1650–1660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Rosati M, Bergamaschi C, Valentin A et al (2009) DNA vaccination in rhesus macaques induces potent immune responses and decreases acute and chronic viremia after SIVmac251 challenge. Proc Natl Acad Sci U S A 106:15831–15836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fuller DH, Rajakumar PA, Wilson LA et al (2002) Induction of mucosal protection against primary, heterologous simian immunodeficiency virus by a DNA vaccine. J Virol 76:3309–3317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 18:927–974

    Article  CAS  PubMed  Google Scholar 

  42. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA (1997) DNA vaccines. Annu Rev Immunol 15:617–648

    Article  CAS  PubMed  Google Scholar 

  43. Nwanegbo E, Vardas E, Gao W et al (2004) Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of the Gambia, South Africa, and the United States. Clin Diagn Lab Immunol 11:351–357

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Mast TC, Kierstead L, Gupta SB et al (2010) International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential hiv vaccine trials. Vaccine 28:950–957

    Google Scholar 

  45. Santra S, Seaman MS, Xu L et al (2005) Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J Virol 79:6516–6522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Schalk JA, Mooi FR, Berbers GA, van Aerts LA, Ovelgonne H, Kimman TG (2006) Preclinical and clinical safety studies on DNA vaccines. Hum Vaccin 2:45–53

    Article  CAS  PubMed  Google Scholar 

  47. Mulligan MJ, Russell ND, Celum C et al (2006) Excellent safety and tolerability of the human immunodeficiency virus type 1 pGA2/JS2 plasmid DNA priming vector vaccine in hiv type 1 uninfected adults. AIDS Res Hum Retroviruses 22:678–683

    Article  CAS  PubMed  Google Scholar 

  48. Gorse GJ, Baden LR, Wecker M et al (2008) Safety and immunogenicity of cytotoxic T-lymphocyte poly-epitope, DNA plasmid (EP HIV-1090) vaccine in healthy, human immunodeficiency virus type 1 (HIV-1)-uninfected adults. Vaccine 26:215–223

    Article  CAS  PubMed  Google Scholar 

  49. Jaoko W, Nakwagala FN, Anzala O et al (2008) Safety and immunogenicity of recombinant low-dosage HIV-1 A vaccine candidates vectored by plasmid p THr DNA or modified vaccinia virus Ankara (mva) in humans in East Africa. Vaccine 26:2788–2795

    Article  CAS  PubMed  Google Scholar 

  50. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    Article  CAS  PubMed  Google Scholar 

  51. Amara RR, Villinger F, Altman JD et al (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/mva vaccine. Science 292:69–74

    Article  CAS  PubMed  Google Scholar 

  52. McConkey SJ, Reece WH, Moorthy VS et al (2003) Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 9:729–735

    Article  CAS  PubMed  Google Scholar 

  53. Harari A, Bart PA, Stohr W et al (2008) An HIV-1 clade c DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med 205:63–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Goonetilleke N, Moore S, Dally L et al (2006) Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 GAG coupled to CD8+ T-cell epitopes. J Virol 80:4717–4728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Wang S, Kennedy JS, West K et al (2008) Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime-protein boost HIV-1 vaccine in healthy human volunteers. Vaccine 26:3947–3957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Lu S (2008) Immunogenicity of DNA vaccines in humans: it takes two to tango. Hum Vaccin 4:449–452

    Article  CAS  PubMed  Google Scholar 

  57. Zolla-Pazner S, Kong XP, Jiang X et al (2011) Cross-clade HIV-1 neutralizing antibodies induced with V3-scaffold protein immunogens following priming with gp120 DNA. J Virol 85:9887–9898

    Google Scholar 

  58. Manam S, Ledwith BJ, Barnum AB et al (2000) Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology 43:273–281

    Article  CAS  PubMed  Google Scholar 

  59. Manoj S, Babiuk LA, van Drunen Littel-van den Hurk S (2004) Approaches to enhance the efficacy of DNA vaccines. Crit Rev Clin Lab Sci 41:1–39

    Article  CAS  PubMed  Google Scholar 

  60. Mathiesen I (1999) Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 6:508–514

    Article  CAS  PubMed  Google Scholar 

  61. Widera G, Austin M, Rabussay D et al (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635–4640

    CAS  PubMed  Google Scholar 

  62. Babiuk S, Baca-Estrada ME, Foldvari M et al (2004) Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J Biotechnol 110:1–10

    Article  CAS  PubMed  Google Scholar 

  63. Liu J, Kjeken R, Mathiesen I, Barouch DH (2008) Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation. J Virol 82:5643–5649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Babiuk S, Baca-Estrada ME, Foldvari M et al (2002) Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 20:3399–3408

    Article  CAS  PubMed  Google Scholar 

  65. Luxembourg A, Hannaman D, Ellefsen B, Nakamura G, Bernard R (2006) Enhancement of immune responses to an HBV DNA vaccine by electroporation. Vaccine 24:4490–4493

    Article  CAS  PubMed  Google Scholar 

  66. Li Z, Zhang H, Fan X et al (2006) DNA electroporation prime and protein boost strategy enhances humoral immunity of tuberculosis DNA vaccines in mice and non-human primates. Vaccine 24:4565–4568

    Article  CAS  PubMed  Google Scholar 

  67. Hooper JW, Golden JW, Ferro AM, King AD (2007) Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 25:1814–1823

    Article  CAS  PubMed  Google Scholar 

  68. Dobano C, Widera G, Rabussay D, Doolan DL (2007) Enhancement of antibody and cellular immune responses to malaria DNA vaccines by in vivo electroporation. Vaccine 25:6635–6645

    Article  CAS  PubMed  Google Scholar 

  69. Livingston BD, Little SF, Luxembourg A, Ellefsen B, Hannaman D (2010) Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques. Vaccine 28:1056–1061

    Google Scholar 

  70. Chen MW, Cheng TJ, Huang Y et al (2008) A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc Natl Acad Sci U S A 105:13538–13543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. LeBlanc R, Vasquez Y, Hannaman D, Kumar N (2008) Markedly enhanced immunogenicity of a Pfs25 DNA-based malaria transmission-blocking vaccine by in vivo electroporation. Vaccine 26:185–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Bodles-Brakhop AM, Draghia-Akli R (2008) DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 7:1085–1101

    Article  CAS  PubMed  Google Scholar 

  73. Best SR, Peng S, Juang CM et al (2009) Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 27:5450–5459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Dupuis M, Denis-Mize K, Woo C et al (2000) Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 165:2850–2858

    CAS  PubMed  Google Scholar 

  75. Selby M, Goldbeck C, Pertile T, Walsh R, Ulmer J (2000) Enhancement of DNA vaccine potency by electroporation in vivo. J Biotechnol 83:147–152

    Article  CAS  PubMed  Google Scholar 

  76. Uno-Furuta S, Tamaki S, Takebe Y et al (2001) Induction of virus-specific cytotoxic T lymphocytes by in vivo electric administration of peptides. Vaccine 19:2190–2196

    Article  CAS  PubMed  Google Scholar 

  77. Otten G, Schaefer M, Doe B et al (2004) Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 22:2489–2493

    Article  CAS  PubMed  Google Scholar 

  78. Otten GR, Schaefer M, Doe B et al (2006) Potent immunogenicity of an HIV-1 gag-pol fusion DNA vaccine delivered by in vivo electroporation. Vaccine 24:4503–4509

    Article  CAS  PubMed  Google Scholar 

  79. Luckay A, Sidhu MK, Kjeken R et al (2007) Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 81:5257–5269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Kulkarni V, Jalah R, Ganneru B et al (2011) Comparison of immune responses generated by optimized DNA vaccination against SIV antigens in mice and macaques. Vaccine 29:6742–6754

    Google Scholar 

  81. Dolter KE, Evans CF, Ellefsen B et al (2011) Immunogenicity, safety, biodistribution and persistence of ADVAX, a prophylactic DNA vaccine for HIV-1, delivered by in vivo electroporation. Vaccine 29:795–803

    Google Scholar 

  82. Simon AJ, Casimiro DR, Finnefrock AC et al (2008) Enhanced in vivo transgene expression and immunogenicity from plasmid vectors following electrostimulation in rodents and primates. Vaccine 26:5202–5209

    Article  CAS  PubMed  Google Scholar 

  83. Yin J, Dai A, Lecureux J et al (2011) High antibody and cellular responses induced to HIV-1 clade c envelope following DNA vaccines delivered by electroporation. Vaccine 29:6763–6770

    Google Scholar 

  84. Cristillo AD, Galmin L, Restrepo S et al (2008) HIV-1 Env vaccine comprised of electroporated DNA and protein co-administered with talabostat. Biochem Biophys Res Commun 370:22–26

    Article  CAS  PubMed  Google Scholar 

  85. Hirao LA, Wu L, Khan AS et al (2008) Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine 26:3112–3120

    Article  CAS  PubMed  Google Scholar 

  86. Muthumani G, Laddy DJ, Sundaram SG et al (2009) Co-immunization with an optimized plasmid-encoded immune stimulatory interleukin, high-mobility group box 1 protein, results in enhanced interferon-gamma secretion by antigen-specific CD8 T cells. Immunology 128:e612–e620

    Article  PubMed  Google Scholar 

  87. Kraynyak KA, Kutzler MA, Cisper NJ, et al (2011) Systemic immunization with CCL27/CTACK modulates immune responses at mucosal sites in mice and macaques. Vaccine 28:1942–1951

    Google Scholar 

  88. Belisle SE, Yin J, Shedlock DJ et al (2011) Long-term programming of antigen-specific immunity from gene expression signatures in the PBMC of rhesus macaques immunized with an SIV DNA vaccine. PLoS One 6:e19681

    Google Scholar 

  89. Law M, Cardoso RM, Wilson IA, Burton DR (2007) Antigenic and immunogenic study of membrane-proximal external region-grafted gp120 antigens by a DNA prime-protein boost immunization strategy. J Virol 81:4272–4285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Cristillo AD, Weiss D, Hudacik L et al (2008) Persistent antibody and T cell responses induced by HIV-1 DNA vaccine delivered by electroporation. Biochem Biophys Res Commun 366:29–35

    Article  CAS  PubMed  Google Scholar 

  91. Winstone N, Wilson AJ, Morrow G et al (2011) Enhanced control of pathogenic Simian immunodeficiency virus SIVmac239 replication in macaques immunized with an interleukin-12 plasmid and a DNA prime-viral vector boost vaccine regimen. J Virol 85:9578–9587

    Google Scholar 

  92. Knudsen ML, Mbewe-Mvula A, Rosario M et al (2012) Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine. J Virol 86:4082–4090

    Google Scholar 

  93. Rosario M, Borthwick N, Stewart-Jones GB et al (2012) Prime-boost regimens with adjuvanted synthetic long peptides elicit T cells and antibodies to conserved regions of HIV-1 in macaques. AIDS 26:275–284

    Google Scholar 

  94. Hutnick NA, Myles DJ, Hirao L et al (2012) An optimized SIV DNA vaccine can serve as a boost for Ad5 and provide partial protection from a high-dose SIVmac251 challenge. Vaccine 30:3202–3208

    Google Scholar 

  95. Hallengard D, Applequist SE, Nystrom S, et al (2012) Immunization with multiple vaccine modalities induce strong HIV-specific cellular and humoral immune responses. Viral Immunol 25:423–432

    Google Scholar 

  96. Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB (2008) Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine 26:440–448

    Article  CAS  PubMed  Google Scholar 

  97. Martinon F, Kaldma K, Sikut R et al (2009) Persistent immune responses induced by a human immunodeficiency virus DNA vaccine delivered in association with electroporation in the skin of nonhuman primates. Hum Gene Ther 20:1291–1307

    Article  CAS  PubMed  Google Scholar 

  98. Brave A, Gudmundsdotter L, Sandstrom E et al (2010) Biodistribution, persistence and lack of integration of a multigene HIV vaccine delivered by needle-free intradermal injection and electroporation. Vaccine 28:8203–8209

    Google Scholar 

  99. Brave A, Nystrom S, Roos AK, Applequist SE (2011) Plasmid DNA vaccination using skin electroporation promotes poly-functional CD4 T-cell responses. Immunol Cell Biol 89:492–496

    Google Scholar 

  100. Hallengard D, Haller BK, Maltais AK et al (2011) Comparison of plasmid vaccine immunization schedules using intradermal in vivo electroporation. Clin Vaccine Immunol 18:1577–1581

    Google Scholar 

  101. Hutnick NA, Myles DJ, Ferraro B et al (2012) Intradermal DNA vaccination enhanced by low-current electroporation improves antigen expression and induces robust cellular and humoral immune responses. Hum Gene Ther 23: 943–950

    Google Scholar 

  102. Lin F, Shen X, Kichaev G et al (2012) Optimization of electroporation-enhanced intradermal delivery of DNA vaccine using a minimally invasive surface device. Hum Gene Ther Methods 23:157–168

    Google Scholar 

  103. Roos AK, Eriksson F, Timmons JA et al (2009) Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment. PLoS One 4:e7226

    Article  PubMed Central  PubMed  Google Scholar 

  104. Lin F, Shen X, McCoy JR et al (2011) A novel prototype device for electroporation-enhanced DNA vaccine delivery simultaneously to both skin and muscle. Vaccine 29:6771–6780

    Google Scholar 

  105. Rosati M, Valentin A, Jalah R et al (2008) Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine 26:5223–5229

    Article  CAS  PubMed  Google Scholar 

  106. Valentin A, von Gegerfelt A, Rosati M et al (2010) Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine 28:1962–1974

    Google Scholar 

  107. van Drunen Littel-van den Hurk S, Hannaman D (2010) Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 9:503–517

    Article  CAS  PubMed  Google Scholar 

  108. Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M (2008) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34:232–240

    Article  CAS  PubMed  Google Scholar 

  109. Stevenson FK, Ottensmeier CH, Johnson P et al (2004) DNA vaccines to attack cancer. Proc Natl Acad Sci U S A 101(Suppl 2):14646–14652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Low L, Mander A, McCann K et al (2009) DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 20:1269–1278

    Article  CAS  PubMed  Google Scholar 

  111. Chudley L, McCann K, Mander A et al (2012) DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8(+) T-cell responses and increases PSA doubling time. Cancer Immunol Immunother 61:2161–2170

    Google Scholar 

  112. Yang FQ, Yu YY, Wang GQ et al (2012) A pilot randomized controlled trial of dual-plasmid HBV DNA vaccine mediated by in vivo electroporation in chronic hepatitis B patients under lamivudine chemotherapy. J Viral Hepat 19:581–593

    Google Scholar 

  113. Cellectis Bioresearch, Inc. http://www.cellectis.com/dermavax

  114. Luxembourg A, Evans CF, Hannaman D (2007) Electroporation-based DNA immunisation: translation to the clinic. Expert Opin Biol Ther 7:1647–1664

    Article  CAS  PubMed  Google Scholar 

  115. Vasan S, Hurley A, Schlesinger SJ et al (2011) In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 6(5):e19252, by permission of PLOS One/Creative Commons Attribution License

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Huang Y, Chen Z, Zhang W et al (2008) Design, construction, and characterization of a dual-promoter multigenic DNA vaccine directed against an HIV-1 subtype C/B' recombinant. J Acquir Immune Defic Syndr 47:403–411

    Article  CAS  PubMed  Google Scholar 

  117. Kopycinski J, Cheeseman H, Ashraf A et al (2012) A DNA-based candidate HIV vaccine delivered via in vivo electroporation induces CD4 responses toward the α4β7-binding V2 loop of HIV gp120 in healthy volunteers. Clin Vaccine Immunol 19:1557–1559

    Google Scholar 

  118. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    Article  CAS  PubMed  Google Scholar 

  119. Haynes BF, Gilbert PB, McElrath MJ et al (2012) Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 366:1275–1286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. www.clinicaltrials.gov

  121. Currier JR, Ngauy V, de Souza MS et al (2010) Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate. PLoS One 5:e13983

    Google Scholar 

  122. Keefer MC, Gilmour J, Hayes P et al (2012) A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 7:e41936

    Google Scholar 

Download references

Disclaimer

The views expressed are those of the author and should not be construed to represent the positions of the US Army or US Department of Defense.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vasan, S. (2014). Electroporation-Mediated Administration of Candidate DNA Vaccines Against HIV-1. In: Li, S., Cutrera, J., Heller, R., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 1121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9632-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9632-8_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9631-1

  • Online ISBN: 978-1-4614-9632-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics