Skip to main content

Neurotoxin Structure

  • Chapter
  • First Online:
Molecular Aspects of Botulinum Neurotoxin

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 4))

  • 955 Accesses

Abstract

The crystal structures of a number of neurotoxins are now available and reveal that all botulinum neurotoxins (BoNTs) have similar structures in general. However, there are differences. These variations and their relation to functional differences will be reviewed. BoNTs A, B, and E have similar structural domains responsible for specific functions in toxicity but have different domain organization. This leads to the difference in speed of onset of toxic effect and its efficacy. Individual domains of botulinum toxins also exhibit differences and these can be correlated to their functional differences. Structural information is also being used in developing countermeasures for botulism. The strategies and their results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46:86–94

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    CAS  PubMed  Google Scholar 

  3. Singh BR, Gimenez JA, DasGupta BR (1991) Comparative molecular topography of botulinum neurotoxins from Clostridium butyricum and Clostridium botulinum type E. Biochim Biophys Acta 1077:119–126

    Article  CAS  PubMed  Google Scholar 

  4. Bhidayasiri R, Truong DD (2005) Expanding use of botulinum toxin. J Neuro Sci 235:1–9

    Article  CAS  Google Scholar 

  5. Bhidayasiri R, Truong DD (2008) Evidence for effectiveness of botulinum toxin for hyperhidrosis. J Neural Transm 115:641–645

    Article  CAS  PubMed  Google Scholar 

  6. Caya JG, Agni R, Miller JE (2004) Clostridium botulinum and the clinical laboratorian: a detailed review of botulism, including biological warfare ramifications of botulinum toxin. Arch Pathol Med 128:653–662

    CAS  Google Scholar 

  7. Cheng CM, Chen JS, Patel RP (2006) Unlabeled uses of botulinum toxins: a review, part 1. Am J Health Syst Pharm 63:145–152

    Article  CAS  PubMed  Google Scholar 

  8. Cheng CM, Chen JS, Patel RP (2006) Unlabeled uses of botulinum toxins: a review, part 2. Am J Health Syst Pharm 63:225–232

    Article  CAS  PubMed  Google Scholar 

  9. Foster KA (2004) The analgesic potential of clostridial neurotoxin derivatives. Expert Opin Investig Drugs 13:1437–1443

    Article  CAS  PubMed  Google Scholar 

  10. Foster KA (2009) Engineered toxins: new therapeutics. Toxicon 54:587–592

    Article  CAS  PubMed  Google Scholar 

  11. Foster KA, Bigalke H, Aoki KR (2006) Botulinum neurotoxin—from laboratory to bedside. Neurotox Res 9:133–140.

    Article  CAS  PubMed  Google Scholar 

  12. Karalewitz AP, Kroken AR, Fu Z, Baldwin MR, Kim JJ, Barbieri JT (2010) Identification of a unique ganglioside binding loop within botulinum neurotoxins C and D-SA. Biochemistry 49:8117–8126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Montecucco C, Papini E, Schiavo G (1994) Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 346:92–98

    Article  CAS  PubMed  Google Scholar 

  14. Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: Its implication in faster translocation. J Mol Biol 386:233–245

    Article  CAS  PubMed  Google Scholar 

  15. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens, RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    Article  CAS  PubMed  Google Scholar 

  16. Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7:693–699

    Article  CAS  PubMed  Google Scholar 

  17. Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of clostridial neurotoxins. J Mol Biol 291:1091–1104

    Article  CAS  PubMed  Google Scholar 

  18. Umland TC, Wingert LM, Swaminathan S, Furey WF, Schmidt JJ, Sax M (1997) Structure of the receptor binding fragment Hc of tetanus neurotoxin. Nat Struct Biol 4:788–792

    Article  CAS  PubMed  Google Scholar 

  19. Murzin AG, Lesk AM, Chothia C (1992) beta-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1 beta and 1 alpha and fibroblast growth factors. J Mol Biol 223:531–543

    Article  CAS  PubMed  Google Scholar 

  20. Fischer A, Garcia-Rodriguez C, Geren I, Lou J, Marks JD, Nakagawa T, Montal M (2008) Molecular architecture of botulinum neurotoxin E revealed by single particle electron microscopy. J Biol Chem 283:3997–4003

    Article  CAS  PubMed  Google Scholar 

  21. Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapmann ER, Stevens RC (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444:1019–1020

    Article  Google Scholar 

  22. Emsley P, Fotinou C, Black I, Fairweather NF, Charles IG, Watts C, Hewitt E, Isaacs NW (2000) The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem 275:8889–8894

    Article  CAS  PubMed  Google Scholar 

  23. Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW (2001) The crystal structure of tetanus toxin Hc fragment complexed with a synthetic Gt1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276:32274–32281

    Article  CAS  PubMed  Google Scholar 

  24. Jayaraman S, Eswaramoorthy S, Ahmed SA, Smith LA, Swaminathan S (2005) N-terminal helix reorients in recombinant C-fragment of Clostridium botulinum type B. Biochem Biophys Res Commun 330:97–103

    Article  CAS  PubMed  Google Scholar 

  25. Jayaraman S, Eswaramoorthy S, Kumaran D, Swaminathan S (2005) Common binding site for disialyllactose and tri-peptide in C-fragment of tetanus neurotoxin. Proteins 61:288–295

    Article  CAS  PubMed  Google Scholar 

  26. Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444:1092–1095

    Article  CAS  PubMed  Google Scholar 

  27. Strotmeier J, Lee K, Volker AK, Mahrhold S, Zong Y, Zeiser J, Zhou J, Pich A, Bigalke H, Binz T, Rummel A, Jin R (2010) Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochem J 431:207–216

    Article  CAS  PubMed  Google Scholar 

  28. Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 48:5631–5641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4:e1000129

    Article  PubMed Central  PubMed  Google Scholar 

  30. Stenmark P, Dong M, Dupuy J, Chapman ER, Stevens RC (2010) Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding. J Mol Biol 397:1287–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 380:76–80

    Article  CAS  PubMed  Google Scholar 

  32. Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:1584–1595

    Article  CAS  PubMed  Google Scholar 

  33. Kitamura M, Takamiya K, Aizawa S, Furukawa K, Furukawa K (1999) Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochemica Biophysica Acta 1441:1–3

    Article  CAS  Google Scholar 

  34. Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11:314–317

    Article  CAS  Google Scholar 

  35. Bigalke H, Muller H, Dreyer F (1986) Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure. Toxicon 24:1065–1074

    Article  CAS  PubMed  Google Scholar 

  36. Marxen P, Bigalke, H (1989) Tetanus toxin: inhibitory action in chromaffin cells is initiated by specified types of gangliosides and promoted in low ionic strength solution. Neurosci Lett 107:261–266

    Article  CAS  PubMed  Google Scholar 

  37. Marxen P, Fuhrmann U, Bigalke H (1989) Gangliosides mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Toxicon 27:849–859

    Article  CAS  PubMed  Google Scholar 

  38. Kamata Y, Yoshimoto M, Kozaki S (1997) Interaction between botulinum neurotoxin type A and ganglioside: ganglioside inactivates the neurotoxin and quenches its tryptophan fluorescence. Toxicon 35:1337–1340

    Article  CAS  PubMed  Google Scholar 

  39. Halpern JL, Loftus A (1993) Characterization of the receptor-binding domain of tetanus toxin. Nature 268:11188–11192

    CAS  Google Scholar 

  40. Shapiro RS, Specht CD, Collins BE, Woods AS, Cotter RJ, Schnaar RL (1997) Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. J Biol Chem 272:30380–30386

    Article  CAS  PubMed  Google Scholar 

  41. Rummel A, Mahrhold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51:631–644

    Article  CAS  PubMed  Google Scholar 

  42. Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326:835–847

    Article  CAS  PubMed  Google Scholar 

  43. Lazarovici P, Yavin E (1986) Affinity-purified tetanus neurotoxin interaction with synaptic membranes: properties of a protease-sensitive receptor component. Biochem Cell Biol 25:7047–7054

    CAS  Google Scholar 

  44. Pierce EJ, VDavison MD, Parton RG, Habig WJ, Cruitchley DR (1986) Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochem J 236:845–852

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman, ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592–596

    Article  CAS  PubMed  Google Scholar 

  46. Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162:1293–1303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Rummel A, Eichner T, Weil T, Karnath T, Gutcaits A, Mahrhold S, Sandhoff K, Proia RL, Acharya KR, Bigalke H, Binz T (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci U S A 104:359–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179:1511–1522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19:5226–5237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Eswaramoorthy S, Kumaran D, Keller J, Swaminathan S (2004) Role of metals in the biological activity of Clostridium botulinum neurotoxins. Biochemistry 43:2209–2216

    Article  CAS  PubMed  Google Scholar 

  51. Koriazova L, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13–18

    Article  CAS  PubMed  Google Scholar 

  52. Fischer A, Montal M (2007) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282:29604–11.

    Article  CAS  PubMed  Google Scholar 

  53. Masuyer G, Thiyagarajan N, James PL, Marks PHH, Chaddock J, Acharya KR (2009) Crystal structure of a catalytically active, non-toxic endopeptidase derivative of Clostridium botulinum toxin A. Biochem Biophys Res Commun 381:50–53

    Article  CAS  PubMed  Google Scholar 

  54. Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4:e1000245

    Article  PubMed Central  PubMed  Google Scholar 

  55. Montal M (2009) Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Toxicon 54:565–569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Galloux M, Vitrac H, Montagner C, Raffestin S, Popoff MR, Chenal A, Forge V, Gillet D (2008) Membrane Interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. J Biol Chem 283:27668–27676

    Article  CAS  PubMed  Google Scholar 

  57. Agarwal R, Schmidt JJ, Stafford RG, Swaminathan S (2009) Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F. Nat Struct Mol Biol 16:789–794

    Article  CAS  PubMed  Google Scholar 

  58. Brunger AT, Breidenbach MA, Jin R, Fischer A, Santos JS, Montal M (2007) Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. PLoS Pathog 3:1191–1194

    Article  CAS  PubMed  Google Scholar 

  59. Silvaggi NR, Wilson D, Tzipori S, Allen KN (2008) Catalytic features of the botulinum neurotoxin a light chain revealed by high resolution structure of an inhibitory peptide complex. Biochemistry 47:5736–5745

    Article  CAS  PubMed  Google Scholar 

  60. Kumaran D, Rawat R, Ahmed SA, Swaminathan S (2008) Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathog 4:e1000165

    Article  PubMed Central  PubMed  Google Scholar 

  61. Kumaran D, Rawat R, Ludivico ML, Ahmed SA, Swaminathan S (2008) Structure and substrate based inhibitor design for clostridium botulinum neurotoxin serotype A. J Biol Chem 283:18883–18891

    Article  CAS  PubMed  Google Scholar 

  62. Agarwal R, Binz T, Swaminathan S (2005) Analysis of active site residues of botulinum neurotoxin E by mutational, functional and structural studies: Glu335Gln is an apoenzyme. Biochemistry 44:8291–8302

    Article  CAS  PubMed  Google Scholar 

  63. Agarwal R, Binz T, Swaminathan S (2005) Structural analysis of botulinum neurotoxin serotype F light chain: implications on substrate binding and inhibitor design. Biochemistry 44:11758–11765

    Article  CAS  PubMed  Google Scholar 

  64. Binz T, Bade S, Rummel A, Kollewe A, Alves J (2002) Arg362 and Tyr365 of the botulinum neurotoxin type A light chain are involved in transition state stabilization. Biochemistry 41:1717–1723

    Article  CAS  PubMed  Google Scholar 

  65. Li L, Binz T, Niemann H, Singh BR (2000) Probing the mechanistic role of glutamate residues in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry 39:2399–2405

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Foran P, Fairweather NF, de Paiva A, Weller U, Dougan G, Dolly JO (1994) A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain. Biochemistry 33:7014–7020

    Article  CAS  PubMed  Google Scholar 

  67. Breidenbach MA, Brunger A (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432:925–929

    Article  CAS  PubMed  Google Scholar 

  68. Chen S, Barbieri JT (2006) Unique substrate recognition by botulinum neurotoxins serotypes A and E. J Biol Chem 281:10906–10911

    Article  CAS  PubMed  Google Scholar 

  69. Agarwal R, Swaminathan S (2008) SNAP-25 substrate peptide (residues 180–183) binds to but bypasses cleavage by catalytically active Clostridium botulinum neurotoxin E. J Biol Chem 283:25944–25951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Swaminathan S, Eswaramoorthy S, Kumaran D (2004) Structure and enzymatic activity of botulinum neurotoxins. Movement Disord 19(Suppl 8):S17–S22

    Article  Google Scholar 

  71. Sikorra S, Henke T, Galli T, Binz T (2008) Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins. J Biol Chem 283:21145–21152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Schmidt JJ, Stafford RG (2005) Botulinum neurotoxin serotype F: identification of substrate recognition requirements and development of inhibitors with low nanomolar affinity. Biochemistry 44:4067–4073

    Article  CAS  PubMed  Google Scholar 

  73. Baldwin MR, Kim JJ, Barbieri JT (2007) Botulinum neurotoxin B-host receptor recognition: it takes two receptors to tango. Nat Struct Mol Biol 14:9–10

    Article  CAS  PubMed  Google Scholar 

  74. Wang J, Meng J, Lawrence GW, Zurawski TH, Sasse A, Bodeker MO, Gilmore MA, Fernandez-Salas E, Francis J, Steward LE, Aoki KR, Dolly JO (2008) Novel chimeras of botulinum neurotoxin/A and/E unveil contributions from the binding, translocation and protease domains to their functional characteristics. J Biol Chem 283:16993–17002

    Article  CAS  PubMed  Google Scholar 

  75. Marks JD (2004) Deciphering antibody properties that lead to potent botulinum neurotoxin neutralization. Mov Disord (Suppl 8):S101–S108

    Article  Google Scholar 

  76. Lightstone FC, Prieto MC, Singh AK, Piqueras MC, Whittal RM, Knapp MS, Balhorn R, Roe DC (2000) Identification of novel small molecule ligands that bind to tetanus toxin. Chem Res Toxicol 13:356–362

    Article  CAS  PubMed  Google Scholar 

  77. Eswaramoorthy S, Kumaran D, Swaminathan S (2001) Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. Acta Crystallogr D Biol Crystallogr 57:1743–1746

    Article  CAS  PubMed  Google Scholar 

  78. Zou J, Miao WY, Ding FH, Meng JY, Ye HJ, Jia GR, He XY, Sun GZ, Li PZ (1985) The effect of toosendanin on monkey botulism. J Tradit Chin Med 5:29–30

    CAS  PubMed  Google Scholar 

  79. Fischer A, Nakai Y, Eubanks LM, Clancy CM, Tepp WH, Pellett S, Dickerson TJ, Johnson EA, Janda KD, Montal M (2009) Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci U S A 106:1330–1335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Burnett JC, Henchal EA, Schmaljohn AL, Bavari S (2005) The evolving field of biodefence: therapeutic developments and diagnostics. Nat Rev Drug Discov 4:281–297

    Article  CAS  PubMed  Google Scholar 

  81. Burnett JC, Opsenica D, Sriraghavan K, Panchal RG, Ruthel G, Hermone AR, Nguyen TL, Kenny TA, Lane DJ, McGrath CF, Schmidt JJ, Vennerstrom JL, Gussio R, Solaja BA, Bavari S (2007) A refined pharmacophore identifies potent 4-amino-7-chloroquinoline-based inhibitors of the botulinum neurotoxin serotype A metalloprotease. J Med Chem 50:2127–2136

    Article  CAS  PubMed  Google Scholar 

  82. Burnett JC, Ruthel G, Stegmann CM, Panchal RG, Nguyen TL, Hermone AR, Stafford RG, Lane DJ, Kenny TA, McGrath CF, Wipf P, Stahl AM, Schmidt JJ, Gussio R, Brunger AT, Bavari S (2007) Inhibition of metalloprotease botulinum serotype A from a pseudo-peptide binding mode to a small molecule that is active in primary neurons. J Biol Chem 282, 5004–5014

    Article  CAS  PubMed  Google Scholar 

  83. Burnett JC, Schmidt JJ, McGrath CF, Nguyen TL, Hermone AR, Panchal RG, Vennerstrom JL, Kodukula K, Zaharevitz DW, Gussio R, Bavari S (2005) Conformational sampling of the botulinum neurotoxin serotype A light chain: implications for inhibitor binding. Bioorg Med Chem 13:333–341

    Article  CAS  PubMed  Google Scholar 

  84. Burnett JC, Schmidt JJ, Stafford RG, Panchal RG, Nguyen TL, Hermone AR, Vennerstrom JL, McGrath CF, Lane DJ, Sausville EA, Zaharevitz DW, Gussio R, Bavari S (2003) Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. Biochem Biophys Res Commun 310:84–93

    Article  CAS  PubMed  Google Scholar 

  85. Pang YP, Vummenthala A, Mishra RK, Park JG, Wang S, Davis J, Millard CB, Schmidt JJ (2010) Potent new small-molecule inhibitor of botulinum neurotoxin serotype A endopeptidase developed by synthesis-based computer-aided molecular design. PloS One 4:e7730

    Article  Google Scholar 

  86. Tang J, Park JG, Millard CB, Schmidt JJ, Pang YP (2007) Computer-aided lead optimization: improved small-molecule inhibitor of the zinc endopeptidase of botulinum neurotoxin serotype A. PloS One 2:e761

    Article  PubMed Central  PubMed  Google Scholar 

  87. Lai H, Feng M, Roxas-Duncan V, Dakshinamurthy S, Smith LA, Yang DC (2009) Quinolinol and peptide inhibitors of zinc protease in botulinum neurotoxin A: effects of zinc ion and peptides on inhibition. Arch Biochem Biophys 491:75–84

    Article  CAS  PubMed  Google Scholar 

  88. Roxas-Duncan V, Enyedy I, Montgomery VA, Eccard VS, Carrington MA, Lai H, Gul N, Yang DC, Smith LA (2009) Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A. Antimicrob Agents Chemother 53:3478–3486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Capkova K, salzameda NT, Janda KD (2009) Investigations into small molecule non-peptidic inhibitors of the botulinum neurotoxins. Toxicon 54:575–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Silvaggi NR, Boldt GE, Hixon MS, Kennedy JP, Tzipori S, Janda KD, Allen KN (2007) Structures of Clostridium botulinum neurotoxin serotype A light chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem Biol 14:533–542

    Article  CAS  PubMed  Google Scholar 

  91. Zuniga JE, Hammill JT, Drory O, Nuss JE, Burnett JC, Gussio R, Wipf P, Bavari S, Brunger AT (2010) Iterative structure-based peptide-like inhibitor design against the botulinum neurotoxin serotype A. Plos One 5:e11378

    Article  PubMed Central  PubMed  Google Scholar 

  92. Zuniga JE, Schmidt JJ, Fenn T, Burnett JC, Arac D, Gussio R, Stafford RG, Badie SS, Bavari S, Brunger AT (2008) A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. Structure (Camb) 16:1588–1597

    Article  CAS  Google Scholar 

  93. Hale M, Oyler G, Swaminathan S, Ahmed SA (2010) Basic tetrapeptides as potent intracellular inhibitors of type A botulinum neurotoxin protease activity. J. Biol. Chem. 286:1802–1811

    Article  PubMed Central  PubMed  Google Scholar 

  94. Schmidt JJ, Stafford RG (2002) A high-affinity competitive inhibitor of type A botulinum neurotoxin protease activity. FEBS Lett 532:423–426

    Article  CAS  PubMed  Google Scholar 

  95. Chen S, Barbieri JT (2009) Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci 106:9180–9184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

The author thanks his colleagues Drs. S. Eswaramoorthy, D. Kumaran, R. Agarwal, and G. Kumar and his collaborators for contributing to this research. Research was supported by an award from DTRA BO742081 under DOE prime contract No. DEAC02-98CH10886 with Brookhaven National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanyam Swaminathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Swaminathan, S. (2014). Neurotoxin Structure. In: Foster, K. (eds) Molecular Aspects of Botulinum Neurotoxin. Current Topics in Neurotoxicity, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9454-6_5

Download citation

Publish with us

Policies and ethics