Skip to main content

Genetics, Genomics and Crop Modelling: Integrative Approaches to the Improvement of Biomass Willows

  • Chapter
  • First Online:
Plants and BioEnergy

Part of the book series: Advances in Plant Biology ((AIPB,volume 4))

Abstract

Willows (Salix spp.) grown as short rotation coppice (SRC) are among the leading commercially grown biomass crops in temperate regions, however, compared with major arable crops they are relatively undomesticated. Initial advances in improving the crop were made by selecting stem characteristics (height, diameter, straightness) and coppicing response (shoot number, shoot vigour), as well as resistance to pests, diseases and environmental stress. Selections were achieved purely on the basis of phenotype, with little understanding of the genetics for many of these important traits, or how they interact with each other and the environment. To enhance yields further, and to adapt the crop to future climates and more marginal environments where biomass crops will be encouraged, a more holistic understanding is needed of the key traits to target and expected gene-environment interactions. In this chapter we begin by reviewing what is known about growth in willow in relation to the parameterisation of process-based models and the advances made in willow genetics and genomics. We finish by considering an integrative approach which feeds genotypic information into phenotypic models of source-sink interaction to identify target traits for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvim R, Hewett EW, Saunders PF (1976) Seasonal variation in hormone content of willow.1. Changes in abscisic acid content and cytokinin activity in xylem sap. Plant Physiol 57:474–476

    Article  PubMed  CAS  Google Scholar 

  • Alvim R, Saunders PF, Barros RS (1979) Abscisic acid and the photoperiodic induction of dormancy in Salix viminalis L. Plant Physiol 63:774–777

    Article  PubMed  CAS  Google Scholar 

  • Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5(R24):21–13

    Google Scholar 

  • Arihan O, Guvenc A (2011) Studies of the anatomical structure of stems of willow (Salix L.) species (Salicacea) growing in Ankara Province, Turkey. Turk J Bot 35:1–17

    Google Scholar 

  • Bao YH, Dharmawardhana P, Mockler TC, Strauss SH (2009) Genome scale transcriptome analysis of shoot organogenesis in Populus. BMC Plant Biol 9(132)

    Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Bowen MR, Hoad GV (1968) Inhibitor content of phloem and xylem sap obtained from willow (Salix viminalis L.) entering dormancy. Planta 81:64–70

    Article  CAS  Google Scholar 

  • Brereton NJ, Pitre FE, Hanley SJ, Ray M, Karp A, Murphy RJ (2010) Mapping of enzymatic saccharification in short rotation coppice willow and its independence from biomass yield. Bioenergy Res 3:251–261

    Article  Google Scholar 

  • Brereton NJB, Pitre FE, Ray MJ, Karp A, Murphy RJ (2011) Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification. Biotechnol Biofuels 4(83)

    Google Scholar 

  • Brereton NJ, Ray MJ, Shield I, Martin P, Karp A, Murphy RJ (2012) Reaction wood—a key cause of variation in cell wall recalcitrance in willow. Biotechnol Biofuels 5:83

    Article  PubMed  CAS  Google Scholar 

  • Cannell MGR, Milne R, Sheppard LJ, Unsworth MH (1987) Radiation interception and productivity of willow. J Appl Ecol 24:261–278

    Article  Google Scholar 

  • Carroll A, Mansoori N, Li S, Lei L, Vernhettes S, Visser RGF, Somerville C, Gu Y, Trindade LM (2012) Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol 160:726–737

    Article  PubMed  CAS  Google Scholar 

  • Cerasuolo M, Richter GM, Cunniff J, Purdy S, Shield I, Karp A (2013) A pseudo-3D model to optimise the target traits of light interception in short-rotation coppice willow. Agric Meteorol 173:127–138

    Article  Google Scholar 

  • Cooke JEK, Weih M (2005) Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology. New Phytol 167:19–30

    Article  PubMed  CAS  Google Scholar 

  • Cooke JEK, Brown KA, Wu R, Davis JM (2003) Gene expression associated with N-induced shifts in resource allocation in poplar. Plant, Cell Environ 26:757–770

    Article  CAS  Google Scholar 

  • Crow P, Houston TJ (2004) The influence of soil and coppice cycle on the rooting habit of short rotation poplar and willow coppice. Biomass Bioenergy 26:497–505

    Article  Google Scholar 

  • Davies JK, Jensen E, Juntilla O, Rivier L, Crozier A (1985) Identification of endogenous gibberellins from Salix pentandra. Plant Physiol 78:473–476

    Article  PubMed  CAS  Google Scholar 

  • Deckmyn G, Laureysens I, Garcia J, Muys B, Ceulemans R (2004) Poplar growth and yield in short rotation coppice: model simulations using the process model SECRETS. Biomass Bioenergy 26:221–227

    Article  Google Scholar 

  • Demura T, Ye Z-H (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:299–304

    Article  PubMed  Google Scholar 

  • Deslauriers A, Giovannelli A, Rossi S, Castro G, Fragnelli G, Traversi L (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol 29:1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Dingkuhn M, Luquet D, Clement-Vidal A, Tambour L, Kim HK, Song YH (2007) Is plant growth driven by sink regulation? In: Spiertz JHJ, Struik PC, Van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, New York, pp 157–170

    Chapter  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev: Mol Cell Biol 12:211–221

    Article  CAS  Google Scholar 

  • Dong Q, Zhao Y, Jiang HJ, He H, Zhu S, Cheng B, Xiang Y (2011) Genome-wide identification and characterization of the cyclin gene family in Populus trichocarpa. Plant Cell Tiss Organ Cult 107:55–67

    Article  CAS  Google Scholar 

  • Douglas CJ, Ehlting J, Harding SA (2011) Phenylpropanoid and phenolic metabolism in Populus: gene family structure and comparative and functional genomics. In: Joshi CP (ed) Genetics genomics and breeding of poplar. CRC press, Boca Raton, pp 304–326

    Chapter  Google Scholar 

  • Druart N, Johansson A, Baba K, Schrader J, Sjodin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573

    Article  PubMed  CAS  Google Scholar 

  • Du J, Groover A (2010) Transcriptional regulation of secondary growth and wood formation. J Integr Plant Biol 52:17–27

    Article  PubMed  CAS  Google Scholar 

  • Eckersten H, Slapokas T (1990) Modeling nitrogen turnover and production in an irrigated short-rotation forest. Agric Meteorol 50:99–123

    Article  Google Scholar 

  • El Kayal W, Allen CCG, Ju CJT, Adams E, King-Jones S, Zaharia LI, Abrams SR, Cooke JEK (2011) Molecular events of apical bud formation in white spruce, Picea glauca. Plant, Cell Environ 34:480–500

    Article  Google Scholar 

  • Ericsson T (1984) Root biomass distribution in willow stands grown on bog. In: Perttu K (ed) Ecology and management of forest biomass. Swed Univ Agric Sci Rep 15:335–348

    Google Scholar 

  • Fernando DD, Zhang SL (2006) Constitutive expression of the SAP1 gene from willow (Salix discolor) causes early flowering in Arabidopsis thaliana. Devel Genes Evol 216:19–28

    Article  CAS  Google Scholar 

  • Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845

    PubMed  CAS  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. A functional approach to common British species. Unwin Hyman, London

    Google Scholar 

  • Guo Y, Ma YT, Zhan ZG, Li BG, Dingkuhn M, Luquet D, De Reffye P (2006) Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Ann Bot 97:217–230

    Article  PubMed  Google Scholar 

  • Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593

    Article  PubMed  CAS  Google Scholar 

  • Hanley SJ (2003) Genetic mapping of important agronomic traits in biomass willow. PhD thesis, University of Bristol, UK

    Google Scholar 

  • Hanley SJ, Mallott MD, Karp A (2006) Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes. Tree Genet Genom 3:35–48

    Article  Google Scholar 

  • Hanley SJ, Pei MH, Powers SJ, Ruiz C, Mallott MD, Barker JHA, Karp A (2011) Genetic mapping of rust resistance loci in biomass willow. Tree Genet Genom 7:597–608

    Article  Google Scholar 

  • Hartweck LM (2008) Gibberellin signaling. Planta 229:1–13

    Article  PubMed  CAS  Google Scholar 

  • Hsu C-Y, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, dePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA 108:10756–10761

    Article  PubMed  CAS  Google Scholar 

  • Hsu C-Y, Adams JP, No K, Liang H, Meilan R, Pechanova O, Barakat A, Carlson JE, Page GP, Yuceer C (2012) Overexpression of constans homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar. Plos ONE 7(e45448)

    Google Scholar 

  • Ibanez C, Kozarewa I, Johansson M, Ogren E, Rohde A, Eriksson ME (2010) Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol 153:1823–1833

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson PK, Garcia MV, Hall D, Luquez V, Jansson S (2006) Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics 172:1845–1853

    Article  PubMed  CAS  Google Scholar 

  • Jeong ML, Jiang HY, Chen HS, Tsai CJ, Harding SA (2004) Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen. Plant Physiol 136:3364–3375

    Article  PubMed  CAS  Google Scholar 

  • Jimenez S, Reighard GL, Bielenberg DG (2010) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73:157–167

    Article  PubMed  CAS  Google Scholar 

  • Junttila O, Kaurin A (1990) Environmental control of cold acclimation in Salix pentandra. Scand J For Res 5:195–204

    Article  Google Scholar 

  • Junttila O, Abe H, Pharis RP (1988) Endogenous gibberellins in elongating shoots of clones of Salix dasyclados and Salix viminalis. Plant Physiol 87:781–784

    Article  PubMed  CAS  Google Scholar 

  • Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels. J Integr Biol 53:151–165

    Article  Google Scholar 

  • Kemi U, Niittyvuopio A, Toivainen T, Pasanen A, Quilot-Turion B, Holm K, Lagercrantz U, Savolainen O, Kuittinen H (2013) Role of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrata. New Phytol 197:323–335

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Leon-Kloosterziel KM, Schwartz SH, Zeevaart JAD (1998) The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem 36:83–89

    Article  CAS  Google Scholar 

  • Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T (2011) Phytochrome-Interacting Factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Plant Cell Physiol 52:1315–1329

    Article  PubMed  CAS  Google Scholar 

  • Lennartsson M, Ogren E (2004) Clonal variation in temperature requirements for budburst and dehardening in Salix species used for biomass production. Scand J For Res 19:295–302

    Article  Google Scholar 

  • Li S, Lei L, Somerville CR, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109:185–190

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu S (2010) Formation and anatomical characteristics of tension wood in stem of poplar I-107 seedlings (Populus euramericana cv. “74/76”) induced by artifical inclination. Scientia Silvae Sinicae 46:133–140

    CAS  Google Scholar 

  • MacDonald AJS (1989) Nitrate availability and shoot area development in small willow (Salix viminalis). Plant, Cell Environ 12:417–424

    Article  Google Scholar 

  • Menges M, Pavesi G, Morandini P, Bogre L, Murray JAH (2007) Genomic organization and evolutionary conservation of plant D-Type cyclins(1 C W). Plant Physiol 145:1558–1576

    Article  PubMed  CAS  Google Scholar 

  • Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot 62:855–868

    Article  PubMed  CAS  Google Scholar 

  • Mueller D, Leyser O (2011) Auxin, cytokinin and control of shoot branching. Ann Bot 107:1203–1212

    Article  CAS  Google Scholar 

  • Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tahtiharju S, Elo A, Decourteix M, Ljung K, Bhalerao R, Keinonen K, Albert VA, Helariutta Y (2008) Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci USA 105:20032–20037

    Article  PubMed  CAS  Google Scholar 

  • Olsen JE (2010) Light and temperature sensing and signalling in induction of bud dormancy in woody plants. Plant Mol Biol 73:37–47

    Article  PubMed  CAS  Google Scholar 

  • Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell Environ 35:1742–1755

    Article  CAS  Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675

    Article  PubMed  CAS  Google Scholar 

  • Richter GM, Acutis M, Trevisiol P, Latiri K, Confalonieri R (2010a) Sensitivity analysis for a complex crop model applied to durum wheat in the Mediterranean. Eur J Agron 32:141–150

    Article  Google Scholar 

  • Richter GM, Dailey GA, Riche AB (2010b) Identifying key process parameters in a sink-source interaction model for energy crops. In: Wery J S-TI, Perrin A ed. Proceeding of the XI Congress of the Eur Soc of Agronomy (Agro 2010). Montpellier, p 97–98.

    Google Scholar 

  • Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell 14:1885–1901

    Article  PubMed  CAS  Google Scholar 

  • Rönnberg-Wastljung AC, Glynn C, Weih M (2005) QTL analyses of drought tolerance and growth for a Salix dasyclados x Salix viminalis hybrid in contrasting water regimes. Theor Appl Genet 110:537–549

    Article  PubMed  Google Scholar 

  • Rönnberg-Wastljung AC, Ahman I, Glynn C, Widenfalk O (2006) Quantitative trait loci for resistance to herbivores in willow: field experiments with varying soils and climates. Entom Exp Appl 118:163–174

    Article  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    Article  PubMed  CAS  Google Scholar 

  • Rytter RM (1999) Fine-root production and turnover in a willow plantation estimated by different calculation methods. Scand J Res 14:526–537

    Google Scholar 

  • Rytter RM (2001) Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. For Ecol Man 140:177–192

    Article  Google Scholar 

  • Rytter RM, Hansson AC (1996) Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilized Salix viminalis L-plantation. Biomass Bioenergy 11:129–137

    Article  Google Scholar 

  • Rytter RM, Rytter L (1998) Growth, decay, and turnover rates of fine roots of basket willows. Can J For Res-Rev Can Rech For 28:893–902

    Article  Google Scholar 

  • Sanchez-Rodriguez C, Bauer S, Hematy K, Saxe F, Ibanez AB, Vodermaier V, Konlechner C, Sampathkumar A, Rueggeberg M, Aichinger E, Neumetzler L, Burgert I, Somerville C, Hauser M-T, Persson S (2012) CHITINASE-LIKE1/POM-POM1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell 24:589–607

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    Article  PubMed  CAS  Google Scholar 

  • Sawa M, Kay SA (2011) GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:11698–11703

    Article  PubMed  CAS  Google Scholar 

  • Sawa M, Kay SA (2012) Circadian clocks and photoperiodism. Fukuoka igaku zasshi (= Hukuoka acta medica) 103:29–34

    Google Scholar 

  • Schapendonk AHCM, Stol W, van Kraalingen DWG, Bouman BAM (1998) LINGRA, a sink/source model to simulate grassland productivity in Europe. Eur J Agron 9:87–100

    Article  Google Scholar 

  • Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292

    Article  PubMed  CAS  Google Scholar 

  • Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64:11–31

    Article  PubMed  CAS  Google Scholar 

  • Sennerby-Forsse L (1986) Seasonal variation in the ultrastructure of the cambium in young stems of willow (Salix viminalis) in relation to phenology. Physiol Plant 67:529–537

    Article  Google Scholar 

  • Sennerby-Forsse L (1995) Growth processes. Biomass Bioenergy 9:35–43

    Article  Google Scholar 

  • Sennerby-Forsse L, Zsuffa L (1995) Bud structure and resprouting in coppiced stools of Salix viminalis L, S. eriocephala Michx, and S. amygdaloides Anders. Trees-Struct Func 9:224–234

    Google Scholar 

  • Sennerby-Forsse L, Berggren B, Brunkener L, Fjell I (1984) Growth behaviour and anatomy of meristems in Salix. In: Perttu K (ed) Ecology and management of forest biomass. Swed Univ Agric Sci Rep 15:481–501

    Google Scholar 

  • Siriwardana NS, Lamb RS (2012) The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation. Int J Devel Biol 56:207–221

    Article  CAS  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  PubMed  CAS  Google Scholar 

  • Stott KG (1961) The rooting pattern of the basket willow—Salix triandra var. Black maul—at Long Asthon. In: annual report for long Ashton research station for 1961. Long Ashton Research Station, Long Ashton, pp 187–190

    Google Scholar 

  • Triana F, Ragaglini G, Bonari E, Cerasuolo M, Richter GM (2011) Modelling the water balance of different grass species used for bioenergy. Biomass Energy Crops IV 112:163–170

    Google Scholar 

  • Tsarouhas V, Gullberg U, Lagercrantz U (2002) An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor Appl Genet 105:277–288

    Article  PubMed  CAS  Google Scholar 

  • Tsarouhas V, Gullberg U, Lagercrantz U (2003) Mapping of quantitative trait loci controlling timing of bud flush in Salix. Hereditas 138:172–178

    Article  PubMed  Google Scholar 

  • Tsarouhas V, Gullberg U, Lagercrantz U (2004) Mapping of quantitative trait loci (QTLs) affecting autumn freezing resistance and phenology in Salix. Theor Appl Genet 108:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA (2006) The genome of black cottonwood. Populus tricharpa Science 313:1596–1604

    CAS  Google Scholar 

  • Verwijst T (1996a) Cyclic and progressive changes in short-rotation willow coppice systems. Biomass Bioenergy 11:161–165

    Article  Google Scholar 

  • Verwijst T (1996b) Stool mortality and development of a competitive hierarchy in a Salix viminalis coppice system. Biomass Bioenergy 10:245–250

    Article  Google Scholar 

  • Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB (2010) Functional-structural plant modelling: a new versatile tool in crop science. J Exp Bot 61:2101–2115

    Article  PubMed  CAS  Google Scholar 

  • Ward SP, Salmon J, Hanley SJ, Karp A, Leyser O (2013) Using Arabidopsis to study shoot branching in biomass willow. Plant Physiol 162:800–811

    Article  PubMed  CAS  Google Scholar 

  • Weih M (2009) Genetic and environmental variation in spring and autumn phenology of biomass willows (Salix spp.): effects on shoot growth and nitrogen economy. Tree Physiol 29:1479–1490

    Article  PubMed  CAS  Google Scholar 

  • Weih M, Rönnberg-Wastljung AC (2007) Shoot biomass growth is related to the vertical leaf nitrogen gradient in Salix canopies. Tree Physiol 27:1551–1559

    Article  PubMed  CAS  Google Scholar 

  • Weih M, Rönnberg-Wastljung AC, Glynn C (2006) Genetic basis of phenotypic correlations among growth traits in hybrid willow (Salix dasyclados x S.viminalis) grown under two water regimes. New Phytol 170:467–477

    Article  PubMed  CAS  Google Scholar 

  • Yang XH, Kalluri UC, DiFazio SP, Wullschleger SD, Tschaplinski TJ, Cheng ZMM, Tuskan GA (2009) Poplar genomics: state of the science. Crit Rev Plant Sci 28:285–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the UK Biotechnological and Biological Sciences Research Council (BBSRC) and Ceres Inc. for funding support of the “BBSRC Sustainable Bioenergy Centre (BSBEC): Perennial Bioenergy Crops Programme” (BB/G016216/1: BSBEC-BioMASS) and BBSRC for funding the RRes “Cropping Carbon” Institute Strategic Programme Grant. We would also like to thank Jennifer Cunniff, Marianna Cerasuolo, Cristina Gritsch, Tim Barraclough and March Castle (RRes) and Sarah Purdy, Lawrence Jones and Anne Maddison (IBERS) for their dedicated work as part of the BSBEC-BioMASS programme and William Macalpine, Rachel Rossiter and Peter Fruen (RRes) for general scientific support. Rothamsted Research is an Institute supported by the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Karp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karp, A., Richter, G.M., Shield, I.F., Hanley, S.J. (2014). Genetics, Genomics and Crop Modelling: Integrative Approaches to the Improvement of Biomass Willows. In: McCann, M., Buckeridge, M., Carpita, N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9329-7_7

Download citation

Publish with us

Policies and ethics