Skip to main content

Cellular Mechanism Underlying the Misfunction of Cardiac Ionic Channels in Diabetes

  • Chapter
  • First Online:
Diabetic Cardiomyopathy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 9))

Abstract

The alterations observed in the ECG of diabetic patients correspond to alterations in the repolarizing currents of the cardiac action potential. Diabetes affects the amplitude and kinetics of most of the potassium currents by modifying the biophysical behavior and even the expression levels of the potassium channel-forming proteins. We review here the effects of diabetes mellitus on individual currents, as well as the intracellular mechanisms that mediate them. Then, we discuss how diabetes modifies the regulation of calcium and potassium channels, with particular emphasis on the transient outward potassium current. Impaired sympathetic activity, loss of insulin-mediated trophic effect, and impaired metabolic status have major effects on the normal functioning of potassium channels in the diabetic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casis O, Echevarría E (2004) Diabetic cardiomyopathy: electromechanical cellular alterations. Curr Vasc Pharmacol 2:237–248

    Article  CAS  PubMed  Google Scholar 

  2. Kahn JK, Sisson JC, Vinik AI (1987) QT interval prolongation and sudden cardiac death in diabetic autonomic neuropathy. J Clin Endocrinol Metab 64:751–754

    Article  CAS  PubMed  Google Scholar 

  3. Ewing DJ, Boland O, Neilson JMM et al (1991) Autonomic neuropathy, QT interval lengthening, and unexpected deaths in male diabetic patients. Diabetologia 34:182–185

    Article  CAS  PubMed  Google Scholar 

  4. Cardoso C, Salles G, Bloch K et al (2001) Clinical determinants of increased QT dispersion in patients with diabetes mellitus. Int J Cardiol 79:253–262

    Article  CAS  PubMed  Google Scholar 

  5. Stettler C, Bearth A, Allemann S et al (2007) QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: a 23-year follow-up. Diabetologia 50:186–194

    Article  CAS  PubMed  Google Scholar 

  6. Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22:359–370

    Article  CAS  PubMed  Google Scholar 

  7. Lengyel C, Virág L, Bíro T et al (2007) Diabetes mellitus attenuates the repolarization reserve in mammalian heart. Cardiovasc Res 73:512–520

    Article  CAS  PubMed  Google Scholar 

  8. Magyar J, Rusznák Z, Szentesi P et al (1992) Action potentials and potassium currents in rat ventricular muscle during experimental diabetes. J Mol Cell Cardiol 24:841–853

    Article  CAS  PubMed  Google Scholar 

  9. Casis O, Gallego M, Iriarte MM, Sánchez-Chapula JA (2000) Effects of diabetic cardiomyopathy on regional electrophysiologic characteristics of rat ventricle. Diabetologia 43:101–109

    Article  CAS  PubMed  Google Scholar 

  10. Chattou S, Coulombe A, Diacono J et al (2000) Slowly inactivating component of sodium current in ventricular myocytes is decreased by diabetes and partially inhibited by known Na+-H+ exchange blockers. J Mol Cell Cardiol 32:1181–1192

    Article  CAS  PubMed  Google Scholar 

  11. Jourdon P, Feuvray D (1993) Calcium and potassium currents in ventricular myocytes isolated from diabetic rats. J Physiol (Lond) 470:411–429

    CAS  Google Scholar 

  12. Tsuchida K, Watajima H, Otomo S (1994) Calcium current in diabetic rat ventricular myocytes. Am J Physiol Heart Circ Physiol 267:H2280–H2289

    CAS  Google Scholar 

  13. Lengyel C, Virág L, Kovács PP et al (2008) Role of slow delayed rectifier K+ current in QT prolongation in the alloxan-induced diabetic rabbit heart. Acta Physiol (Oxf) 192:356–368

    Article  Google Scholar 

  14. Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253

    Article  CAS  PubMed  Google Scholar 

  15. Beuckelmann DJ, Näbauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385

    Article  CAS  PubMed  Google Scholar 

  16. Spector PS, Curran ME, Zou A et al (1996) Fast inactivation causes rectification of the IKr channel. J Gen Physiol 107:611–619

    Article  CAS  PubMed  Google Scholar 

  17. Li GR, Feng J, Yue L et al (1996) Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res 78:689–696

    Article  CAS  PubMed  Google Scholar 

  18. Pond AL, Scheve BK, Benedict AT et al (2000) Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(Kr) channels. J Biol Chem 275:5997–6006

    Article  CAS  PubMed  Google Scholar 

  19. Van Wagoner DR, Nerbonne JM (2000) Molecular basis of electrical remodeling in atrial fibrillation. J Mol Cell Cardiol 32:1101–1117

    Article  PubMed  Google Scholar 

  20. Torres-Jacome J, Gallego M, Rodríguez-Robledo JM et al (2013) Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes. Acta Physiol (Oxf) 207:447–459

    Article  CAS  Google Scholar 

  21. Shimoni Y, Firek L, Severson D, Giles WR (1994) Short-term diabetes alters K+ currents in rat ventricular myocytes. Circ Res 74:620–628

    Article  CAS  PubMed  Google Scholar 

  22. Watanabe T, Delbridge LM, Bustamante JO, McDonald TF (1983) Heterogeneity of the action potential in isolated rat ventricular myocytes and tissue. Circ Res 52:280–290

    Article  CAS  PubMed  Google Scholar 

  23. Clark RB, Bouchard RA, Salinas-Stefanon E et al (1993) Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res 27:1795–1799

    Article  CAS  PubMed  Google Scholar 

  24. Apkon M, Nerbonne JM (1991) Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 97:973–1011

    Article  CAS  PubMed  Google Scholar 

  25. Scamps F (1996) Characterization of a β-adrenergically inhibited K+ current in rat cardiac ventricular cells. J Physiol (Lond) 491:81–97

    CAS  Google Scholar 

  26. Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Xiao J, Wang H et al (2006) Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits. Am J Physiol Heart Circ Physiol 291:H1446–H1455

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Xiao J, Lin H et al (2007) Ionic mechanisms underlying abnormal QT prolongation and the associated arrhythmias in diabetic rabbits: a role of rapid delayed rectifier K+ current. Cell Physiol Biochem 19:225–238

    CAS  PubMed  Google Scholar 

  29. Roden DM (1998) Taking the idio out of idiosyncratic-predicting torsades de pointes. Pacing Clin Electrophysiol 21:1029–1034

    Article  CAS  PubMed  Google Scholar 

  30. Shimoni Y, Ewat HS, Severson D (1998) Type I and type II models of diabetes reduce different modifications of K+ currents in rat heart: role of insulin. J Physiol (Lond) 507:485–496

    Article  CAS  Google Scholar 

  31. Wang DW, Kiyosue T, Shigematsu S, Arita M (1995) Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rats with chronic diabetes. Am J Physiol Heart Circ Physiol 269:H1288–H1296

    CAS  Google Scholar 

  32. Chattou S, Diacono J, Feuvray D (1999) Decrease in sodium-calcium exchange and calcium currents in diabetic rat ventricular myocytes. Acta Physiol Scand 166:137–144

    Article  CAS  PubMed  Google Scholar 

  33. Horackova M, Murphy MG (1988) Effects of chronic diabetes mellitus on the electrical and contractile activities, 45Ca2+ transport, fatty acid profiles and ultrastructure of isolated rat ventricular myocytes. Pfügers Arch-Eur J Physiol 441:564–572

    Article  Google Scholar 

  34. Penpargkul S, Fein FS, Sonnenblick SH, Scheuer J (1981) Depressed cardiac sarcoplasmic reticulum function from diabetic rats. J Mol Cell Cardiol 13:303–309

    Article  CAS  PubMed  Google Scholar 

  35. Allo SN, Lincoln TM, Wilson GL, Green FJ et al (1991) Non-insulin-dependent diabetes-induced defects in cardiac cellular calcium regulation. Am J Physiol Cell Physiol 260:C1165–C1171

    CAS  Google Scholar 

  36. Golfman LS, Takeda N, Dhalla NS (1996) Cardiac membrane Ca2+-transport in alloxan-induced diabetic rats. Diabetes Res Clin Pract 31:S73–S77

    Article  CAS  PubMed  Google Scholar 

  37. Teshima Y, Takahashi N, Sikawa T et al (2000) Diminished expression of sarcoplasmic reticulum Ca2+ATPase and Ryanodine sensitive Ca2+ channel mRNA in streptozotocin-induced diabetic rat heart. J Mol Cell Cardiol 32:655–664

    Article  CAS  PubMed  Google Scholar 

  38. Netticadam T, Temsah RM, Kent A et al (2001) Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 50:2133–2138

    Article  Google Scholar 

  39. Zong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR protein expression associated with contractile dysfunction in diabetic hearts. Am J Physiol Heart Circ Physiol 281:H1137–H1147

    Google Scholar 

  40. Tuckwell HC (2012) Quantitative aspects of L-type Ca2+ currents. Prog Neurobiol 96:1–31

    Article  CAS  PubMed  Google Scholar 

  41. Gallego M, Casis E, Izquierdo MJ, Casis O (2000) Restoration of cardiac transient outward potassium current by norepinephrine in diabetic rats. Pflügers Arch-Eur J Physiol 441:102–107

    Article  CAS  Google Scholar 

  42. Fernández-Velasco M, Ruiz-Hurtado G, Hurtado O et al (2007) TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. Am J Physiol Heart Circ Physiol 293:H238–H245

    Article  PubMed  Google Scholar 

  43. Mia S, Munoz C, Pakladok T et al (2012) Downregulation of Kv1.5 K+ channels by the AMP-activated protein kinase. Cell Physiol Biochem 30:1039–1050

    Article  CAS  PubMed  Google Scholar 

  44. Vinik AI, Maser RE, Ziegler D (2011) Autonomic imbalance: prophet of doom or scope for hope? Diabet Med 28:643–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gallego M, Setién R, Puebla L et al (2005) α1-adrenoceptors stimulate a Gαs protein and reduce the transient outward K+ current via a cAMP/PKA-mediated pathway in the rat heart. Am J Physiol Cell Physiol 288:C577–C585

    Article  CAS  PubMed  Google Scholar 

  46. Sato N, Hashimoyo H, Takiguchi Y, Nakashima M (1989) Altered responsiveness to sympathetic nerve stimulation and agonists of isolated left atria of diabetic rats: no evidence for involvement of hypothyroidism. J Pharmacol Exp Ther 248:367–371

    CAS  PubMed  Google Scholar 

  47. Kamafa K, Kirisawa H (1998) Changes in electrophysiological properties and noradrenaline response in vas deferens of diabetic rats. Eur J Pharmacol 350:237–241

    Article  Google Scholar 

  48. Gallego M, Casis O (2001) Regulation of cardiac transient outward potassium current by norepinephrine in normal and diabetic rats. Diabetes Metab Res Rev 17:304–309

    Article  CAS  PubMed  Google Scholar 

  49. Gallego M, Espiña L, Casis O (2002) Blood pressure responsiveness to sympathetic agonists in anaesthetised diabetic rats. J Physiol Biochem 58:87–93

    Article  CAS  PubMed  Google Scholar 

  50. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    Article  PubMed  Google Scholar 

  51. Bitar MS, Koulu M, Rapoport SI, Linnoila M (1987) Adrenal catecholamine metabolism and myocardial adrenergic receptors in streptozotocin diabetic rats. Biochem Pharmacol 36:1011–1016

    Article  CAS  PubMed  Google Scholar 

  52. Thomas D, Wu K, Wimmer AB, Zitron E et al (2004) Activation of cardiac human ether-a-go-go related gene potassium currents is regulated by alpha(1A)-adrenoceptors. J Mol Med 82: 826–837

    Article  CAS  PubMed  Google Scholar 

  53. Yang T, Roden DM (1996) Regulation of sodium current development in cultured atrial tumor myocytes (AT-1) cells. Am J Physiol Heart Circ Physiol 271:H541–H547

    CAS  Google Scholar 

  54. Zhang JF, Robinson RB, Siegelbaum SA (1992) Sympathetic neurons mediate developmental change in cardiac sodium channel gating through long-term neurotransmitter action. Neuron 9:97–103

    Article  CAS  PubMed  Google Scholar 

  55. Ogawa S, Barnett JV, Sen L et al (1992) Direct contact between sympathetic neurons and rat cardiac myocytes in vitro increases expression of functional calcium channels. J Clin Invest 89:1085–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Liu QY, Rosen MR, McKinnon D, Robinson RB (1998) Sympathetic innervation modulates repolarizing K+ currents in rat epicardial myocytes. Am J Physiol Heart Circ Physiol 274:H915–H922

    CAS  Google Scholar 

  57. Pacioretty LM, Barr SC, Han WP, Gilmour RF Jr (1995) Reduction of the transient outward potassium current in a canine model of Chagas’ disease. Am J Physiol Heart Circ Physiol 268:H1258–H1267

    CAS  Google Scholar 

  58. Machado CR, De Oliveira DA, Magalhanes MJ et al (1994) Trypanosoma cruzi infection in rats induced by early lesion of the heart noradrenergic nerve terminals by a complement-independent mechanism. J Neural Transm Gen Sect 97:149–159

    Article  CAS  PubMed  Google Scholar 

  59. Gallego M, Setién R, Izquierdo MJ et al (2003) Diabetes-induced biochemical changes in central and peripheral catecholaminergic systems. Physiol Res 52:735–741

    CAS  PubMed  Google Scholar 

  60. Han WP, Barr SC, Pacioretty LM, Gilmour RF Jr (1997) Restoration of the transient outward potassium current by noradrenaline in chagasic canine epicardium. J Physiol (Lond) 500:75–83

    CAS  Google Scholar 

  61. O’Brien RM, Granner DK (1996) Regulation of gene expression by insulin. Physiol Rev 76:1109–1161

    PubMed  Google Scholar 

  62. Shimoni Y, Ewart HS, Severson D (1999) Insulin stimulation of rat ventricular K+ currents depends on the integrity of the cytoskeleton. J Physiol (Lond) 514:735–745

    Article  CAS  Google Scholar 

  63. Setién R, Alday A, Diaz-Asensio C et al (2013) Mechanisms responsible for the trophic effect of beta-adrenoceptors on the Ito current density in type 1 diabetic rat cardiomyocytes. Cell Physiol Biochem 31:25–36

    Article  PubMed  Google Scholar 

  64. Xu Z, Patel KP, Rozanski GJ (1996) Metabolic basis of decreased transient outward K+ current in ventricular myocytes from diabetic rats. Am J Physiol Heart Circ Physiol 271:H2190–H2196

    CAS  Google Scholar 

  65. Xu Z, Patel KP, Lou MF, Rozanski GJ (2002) Up-regulation of K+ channels in diabetic rat ventricular myocytes by insulin and glutathione. Cardiovasc Res 53:80–88

    Article  CAS  PubMed  Google Scholar 

  66. Heidrich F, Schotola H, Popov AF et al (2010) AMP-activated protein kinase and its role in energy metabolism of the heart. Curr Cardiol Rev 6:337–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Hardie DG (2012) AMP-activated protein kinase, an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908

    Article  Google Scholar 

  68. Alesutan I, Föller M, Sopjani M et al (2011) Inhibition of the heterotetrameric K+ channel KCNQ1/KCNE1 by the AMP-activated protein kinase. Mol Membr Biol 28:79–89

    Article  CAS  PubMed  Google Scholar 

  69. Qin D, Huang B, Deng L et al (2001) Downregulation of K(+) channel genes expression in type I diabetic cardiomyopathy. Biochem Biophys Res Commun 283:549–553

    Article  CAS  PubMed  Google Scholar 

  70. Nishiyama A, Ishii DN, Backx PH et al (2001) Altered K+ channel gene expression in diabetic rat ventricle: isoform switching between Kv4.2 and Kv1.4. Am J Physiol Heart Circ Physiol 281:H1800–H1807

    CAS  PubMed  Google Scholar 

  71. Gallego M, Alday A, Urrutia J, Casis O (2009) Transient outward potassium channel regulation in healthy and diabetic hearts. Can J Physiol Pharmacol 87:77–83

    Article  CAS  PubMed  Google Scholar 

  72. Tessier S, Karczewski P, Krause EG et al (1999) Regulation of the transient outward K+ current by Ca+2/calmodulin-dependent protein kinase II in human atrial myocytes. Circ Res 85:810–819

    Article  CAS  PubMed  Google Scholar 

  73. Sergeant GP, Ohya S, Reihill JA et al (2005) Regulation of Kv4.3 currents by Ca2+/calmodulin-dependent protein kinase II. Am J Physiol Cell Physiol 288:C304–C313

    Article  CAS  PubMed  Google Scholar 

  74. Colinas O, Gallego M, Setien R et al (2006) Differential modulation of kv4.2 and kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 291:H1978–H1987

    Article  CAS  PubMed  Google Scholar 

  75. Gallego M, Fernández D, Ahyayauch H et al (2008) Reduced calmodulin expression accelerates transient outward potassium current inactivation in diabetic rat heart. Cell Physiol Biochem 22:625–634

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

 This work has been supported by Universidad del País Vasco UPV/EHU grants (PPM12/12) to O. Casis and (EHUA12/12) to M. Gallego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Casis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gallego, M., Casis, O. (2014). Cellular Mechanism Underlying the Misfunction of Cardiac Ionic Channels in Diabetes. In: Turan, B., Dhalla, N. (eds) Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9317-4_11

Download citation

Publish with us

Policies and ethics