Skip to main content

Emerging Engineering Technologies for Opening the BBB

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

  • 3640 Accesses

Abstract

Current treatments of neurological and neurodegenerative diseases are limited due to the lack of a truly noninvasive, transient, and regionally selective brain drug delivery method. The brain is particularly difficult to deliver drugs to because of the blood–brain barrier (BBB). The impermeability of the BBB is due to the tight junctions between adjacent endothelial cells and highly regulatory transport systems of the endothelial cell membranes. The main function of the BBB is ion and volume regulation to ensure the conditions necessary for proper synaptic and axonal signaling. However, the same permeability properties that keep the brain healthy also present tremendous obstacles to its pharmacological treatment. Until a solution to the trans-BBB delivery problem is found, treatments of neurological diseases will remain impeded. Over the past decade, methods that combine focused ultrasound (FUS) and microbubbles have been shown to offer the unique capability to noninvasively, locally, and transiently open the BBB. Four of the main challenges to the application of FUS are (1) to assess its safety profile, (2) to unveil the mechanism by which the BBB opens and closes, (3) to control and predict the opened BBB properties and duration of the opening, and (4) to assess its promise for brain drug delivery. In this chapter, we discuss all of these challenges, along with findings in both small (mice) and large (nonhuman primates) animals, and emphasize the clinical potential for this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Arvanitis CD, Livingstone MS, Vykhodtseva N, McDannold N (2012) Controlled ultrasound-induced blood–brain barrier disruption using passive acoustic emissions monitoring. PloS One 7(9):e45783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bakay L, Ballantine HT Jr, Hueter TF, Sosa D (1956) Ultrasonically produced changes in the blood–brain barrier. AMA Arch Neurol Psychiatry 76:457–467

    Article  CAS  PubMed  Google Scholar 

  • Ballantine HT Jr, Bell E, Manlapaz J (1960) Progress and problems in the neurological applications of focused ultrasound. J Neurosurg 17:858–876

    Article  PubMed  Google Scholar 

  • Baseri B, Choi JJ, Tung YS, Konofagou EE (2010) Safety assessment of blood–brain barrier opening using focused ultrasound and definity microbubbles: a short-term study. Ultrasound Med Biol 36(9):1445–1459

    Article  PubMed  Google Scholar 

  • Baseri B, Choi JJ, Deffieux T, Samiotaki G, Tung YS, Olumolade O, Small SA, Morrison B, Konofagou EE (2012) Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood–brain barrier using focused ultrasound and microbubbles. Phys Med Biol 57(7):N65–N81

    Article  PubMed  Google Scholar 

  • Blasberg RG, Patlak C, Fenstermacher JD (1975) Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 195:73–83

    CAS  PubMed  Google Scholar 

  • Borden M, Kruse D, Caskey C et al (2005) Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans Ultrason Ferroelect Freq Contr 52:1992–2002

    Article  Google Scholar 

  • Burgess A, Ayala-Grosso CA, Ganguly M, JordĂŁo JF, Aubert I, Hynynen K (2011) Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood–brain barrier. PLoS One 6(11):e27877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Kroll MH, Shohet RV, Frenkel P, Mayer SA, Grayburn PA (2002) Bioeffects of myocardial contrast microbubble destruction by echocardiography. Echocardiagraphy 19:495–500

    Article  CAS  Google Scholar 

  • Choi JJ, Pernot M, Small SA, Konofagou EE (2005) Feasibility of transcranial, localized drug-delivery in the brain of Alzheimer's-model mice using focused ultrasound. IEEE Inter Ultrason Symp, Boston, MA, 988–991

    Google Scholar 

  • Choi JJ, Pernot M, Small S, Konofagou EE (2006) Noninvasive blood–brain barrier opening in live mice. International symposium on therapeutic ultrasound. AIP conference proceedings, vol 829:271–275

    Google Scholar 

  • Choi JJ, Small SA, Konofagou EE (2006) Optimization of blood–brain barrier opening in mice using focused ultrasound, In: IEEE proceedings of the symposium in ultrasonics, ferroelectrics and frequency control, pp 540–543

    Google Scholar 

  • Choi JJ, Pernot M, Small SA, Konofagou EE (2007a) Noninvasive, transcranial and localized opening of the blood–brain barrier using focused ultrasound in mice. Ultrasound Med Biol 33:95–104

    Article  PubMed  Google Scholar 

  • Choi JJ, Pernot M, Brown TR, Small SA, Konofagou EE (2007b) Spatio-temporal analysis of molecular delivery through the blood–brain barrier using focused ultrasound. Phys Med Biol 52:5509–5530

    Article  CAS  PubMed  Google Scholar 

  • Choi JJ, Wang S, Morrison B III, Konofagou EE (2007) Focused ultrasound-induced molecular delivery through the blood-brain barrier. In: IEEE proceedings of the symposium in ultrasonics, ferroelectrics and frequency control, New York, NY, pp 1192–1195

    Google Scholar 

  • Choi JJ, Wang S, Brown TR, Small SA, Duff KE, Konofagou EE (2008) Noninvasive and transient blood–brain barrier opening in the hippocampus of Alzheimer's double transgenic mice using focused ultrasound. Ultrason Imaging 30:189–200

    Article  PubMed  Google Scholar 

  • Choi JJ, Feshitan JA, Wang S, Tung Y-S, Baseri B, Borden MA, Konofagou EE (2009) The dependence of the ultrasound-induced blood–brain barrier opening characteristics on microbubble size in vivo. In: Emad SE (ed) 8th international symposium on therapeutic ultrasound. AIP, Minneapolis, MN, USA, pp 58–62

    Google Scholar 

  • Choi J, Selert K, Vlachos F, Wong A, Konofagou EE (2011a) Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. Proc Natl Acad Sci U S A 108(40):16539–16544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi J, Selert K, Gao Z, Samiotaki G, Baseri B, Konofagou EE (2011b) Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies. Journal of Cerebral Flow and Metabolism, 31(2), 725–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen DA (1988) Ultrasonic bioinstrumentation. Wiley, New York

    Google Scholar 

  • Christiansen J, French BA, Klibanov AL, Kaul S, Lindner JR (2003) Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 29:1759–1767

    Article  PubMed  Google Scholar 

  • Chomas JE, Dayton P, May D, Ferrara K (2001) Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt 6:141–150

    Article  CAS  PubMed  Google Scholar 

  • Deffieux T, Konofagou E (2010) Numerical study and experimental validation of a simple transcranial focused ultrasound system applied to blood–brain barrier opening. IEEE Trans Ultrason Ferroelectr Freq Control 57(12):2637–2653

    Google Scholar 

  • Farny CH, Holt RG, Roy RA (2009) Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system. Ultrasound Med Biol 35:603–615

    Article  PubMed  Google Scholar 

  • Feshitan JA, Chen CC, Kwan JJ, Borden MA (2009) Microbubble size isolation by differential centrifugation. J Colloid Interface Sci 329:316–324

    Article  CAS  PubMed  Google Scholar 

  • Fischer H, Gottschlich R, Seelig A (1998) Blood–brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol 165:201–211

    Article  CAS  PubMed  Google Scholar 

  • Fung LK, Shin M, Tyler B, Brem H, Saltzman WM (1996) Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharmaceut Res 13:671–682

    Article  CAS  Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68

    Article  CAS  PubMed  Google Scholar 

  • Howles GP, Bing KF, Qi Y, Rosenzweig SJ, Nightingale KR, Johnson GA (2010) Contrast-enhanced in vivo magnetic resonance microscopy of the mouse brain enabled by noninvasive opening of the blood–brain barrier with ultrasound. Magn Reson Med 64(4):995–1004

    Article  PubMed Central  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology 220:640–646

    Article  CAS  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2003) Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl 86:555–558

    CAS  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20

    Article  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood–brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105:445–454

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5:347–360

    Article  CAS  PubMed  Google Scholar 

  • Kaps M, Seidel G, Algermissen C, Gerriets T, Broillet A (2001) Pharmacokinetics of echocontrast agent infusion in a dog model. J Neuroimaging 11:298–302

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann BA, Wei K, Lindner JR (2007) Contrast echocardiography. Curr Probl Cardiol 32:51–96

    Article  PubMed  Google Scholar 

  • Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci U S A 103:11719–11723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konofagou EE, Choi J, Baseri B, Lee A (2009) Characterization and optimization of trans-blood-brain barrier diffusion in vivo. In: Ebbini SE (ed) 8th international symposium on therapeutic ultrasound. AIP, Minneapolis, MN, USA, pp 418–422

    Google Scholar 

  • Konofagou EE, Choi JJ (2008) Ultrasound-induced treatment of neurodegenerative diseases across the blood–brain barrier. In: Ahmed A-J, Alizad A (eds) Biomedical applications of vibration and acoustics in therapy, bioeffects and modeling. ASME Press, New York, NY, pp 63–80

    Chapter  Google Scholar 

  • Leighton RG (1997) The acoustic bubble. Academic, London, UK

    Google Scholar 

  • Li P, Armstrong WF, Miller DL (2004) Impact of myocardial contrast echocardiography on vascular permeability: comparison of three different contrast agents. Ultrasound Med Biol 30:83–91

    Article  CAS  PubMed  Google Scholar 

  • Li P, Cao LQ, Dou CY, Armstrong WF, Miller D (2003) Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, pressure amplitude and contrast dose. Ultrasound Med Biol 29:1341–1349

    Article  PubMed  Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  PubMed  Google Scholar 

  • Liu GYP, Tan K et al (2005) Impact of microbubble enhanced ultrasound on blood–brain barrier permeability: an in vivo dose response study of ultrasound intensity and contrast dose. Circulation 112:U602–U605

    Article  Google Scholar 

  • Marquet F, Tung Y-S, Konofagou EE (2010) Feasibility study of a clinical blood–brain opening ultrasound system. Nano Life 1(3 & 4):309–322

    Article  CAS  Google Scholar 

  • Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE (2011) Noninvasive, transient and selective blood–brain barrier opening in non-human primates in vivo. PLoS One 6(7):e22598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDannold N, Vykhodtseva N, Jolesz FA, Hynynen K (2004) MRI investigation of the threshold for thermally induced blood–brain barrier disruption and brain tissue damage in the rabbit brain. Magn Reson Med 51:913–923

    Article  PubMed  Google Scholar 

  • McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K (2005) MRI-guided targeted blood–brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol 31:1527–1537

    Article  PubMed  Google Scholar 

  • McDannold N, Vykhodtseva N, Hynynen K (2006) Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51:793–807

    Article  CAS  PubMed  Google Scholar 

  • McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS (2012) Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 72(14):3652–632012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mesiwala AH, Farrell L, Wenzel HJ, Silbergeld DL, Crum LA, Winn HR, Mourad PD (2002) High-intensity focused ultrasound selectively disrupts the blood–brain barrier in vivo. Ultrasound Med Biol 28:389–400

    Article  PubMed  Google Scholar 

  • Miller DL (2007) Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Progr Biophys Mol Biol 93:314–330

    Article  Google Scholar 

  • Miller D, Li P, Dou C, Gordon D, Edwards CA, Armstrong WF (2005) Influence of contrast agent dose and ultrasound exposure on cardiomyocyte injury induced by myocardial contrast echocardiography in rats. Radiology 237:137–143

    Article  PubMed  Google Scholar 

  • Neppiras EA (1980) Acoustic cavitation. Phys Rep 61:159–251

    Article  Google Scholar 

  • Patrick JT, Nolting MN, Goss SA, Dines KA, Clendenon JL, Rea MA, Heimburger RF (1990) Ultrasound and the blood–brain barrier. Adv Exp Med Biol 267:369–381

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2005) The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    Article  PubMed Central  PubMed  Google Scholar 

  • Pardridge WM (2006) Molecular trojan horses for blood–brain barrier drug delivery. Discov Med 6:139–143

    PubMed  Google Scholar 

  • Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24:1733–1744

    Article  CAS  PubMed  Google Scholar 

  • Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ (2008) Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models. PLoS One 3(5):e2175

    Article  PubMed Central  PubMed  Google Scholar 

  • Samiotaki G, Vlachos F, Tung YS, Konofagou EE (2012) A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood–brain barrier opening reversibility in vivo using MRI. Magn Reson Med 67(3):769–777

    Article  PubMed Central  PubMed  Google Scholar 

  • Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K (2004) Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30:979–989

    Article  PubMed  Google Scholar 

  • Sheikov N, McDannold N, Jolesz F, Zhang YZ, Tam K, Hynynen K (2006) Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood–brain barrier. Ultrasound Med Biol 32:1399–1409

    Article  PubMed  Google Scholar 

  • Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34(7):1093–1104

    Article  PubMed Central  PubMed  Google Scholar 

  • Stewart PA, Tuor UI (1994) Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol 340:566–576

    Article  CAS  PubMed  Google Scholar 

  • Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907

    Article  CAS  PubMed  Google Scholar 

  • Tung YS, Vlachos F, Choi JJ, Deffieux T, Selert K, Konofagou EE (2010) In vivo noninvasive cavitation threshold detection during blood–brain barrier opening using FUS and Definity. Phys Med Biol 55(20):6141–6155

    Article  PubMed  Google Scholar 

  • Tung YS, Marquet F, Teichert T, Ferrera V, Konofagou EE (2011a) Feasibility of noninvasive cavitation-guided blood–brain barrier opening using focused ultrasound and microbubbles in nonhuman primates. Appl Phys Lett 98(16):163704

    Article  PubMed  Google Scholar 

  • Tung YS, Vlachos F, Feshitan JA, Borden MA, Konofagou EE (2011b) The mechanism of interaction between focused ultrasound and microbubbles in blood–brain barrier opening in mice. J Acoust Soc Am 130(5):3059–3067

    Article  PubMed  Google Scholar 

  • Vlachos F, Tung Y, Konofagou EE (2010) Permeability assessment of the focused ultrasound-induced blood–brain barrier opening using dynamic contrast-enhanced MRI. Phys Med Biol 55:5451–5466

    Article  CAS  PubMed  Google Scholar 

  • Vykhodtseva NI, Hynynen K, Damianou C (1995) Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol 21:969–979

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Olumolade O, Osting S, Burger C, Konofagou EE (2013) Focused ultrasound induced blood-brain barrier opening in macromolecule delivery, 13th International Symposium on Therapeutic Ultrasound, Shanghai, China

    Article  PubMed  Google Scholar 

  • Yang FY, Fu WM, Yang RS, Liou HC, Kang KH, Lin WL (2007) Quantitative evaluation of focused ultrasound with a contrast agent on blood–brain barrier disruption. Ultrasound Med Biol 33:1421–1427

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work shown here was performed by Yao-Sheng Tung, James Choi, Thomas Deffieux, Babak Baseri, Fabrice Marquet, and Fotios Vlachos, previously with the Ultrasound and Elasticity Imaging Laboratory of the Biomedical Engineering Department at Columbia. Collaborators on the microbubble studies were Jameel Feshitan and Mark Borden (currently at the University of Colorado-Boulder) and on the non-human primate studies were Tobias Techert and Vincent Ferrera (Columbia University). The research was supported by NIH R01 EB009041, NIH R21 EY018505, NSF CAREER 064471, the Kinetics Foundation and the Kavli Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa E. Konofagou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Konofagou, E.E. (2014). Emerging Engineering Technologies for Opening the BBB. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_20

Download citation

Publish with us

Policies and ethics