Skip to main content

Imaging Biomarkers of Angiogenesis and the Microvascular Environment in Cerebral Tumors

  • Reference work entry
  • First Online:
Neurovascular Imaging

Abstract

The structure and organization of blood vessels within tumor tissue is very different from that seen in normal tissues. Tumor blood vessels show abnormalities in microstructure and hierarchical organization, which result from multiple factors including local tumor characteristics, angiogenic drive, and the ability of the angiogenic process to keep pace with tumor growth. Tumor microvasculature is inefficient compared to that seen in normal tissues, and, particularly in rapidly growing tumors, blood flow is often inadequate to meet the demands for oxygen and nutrient delivery and clearance of waste material. Understanding the microvascular environment and its variation between and within tumors is critical for an understanding of tumor behavior and therapeutic response. A wide range of quantitative imaging techniques have been developed in an attempt to provide noninvasive, repeatable assays of microvascular characteristics which can then be studied in terms of their spatial variability and change over time. This chapter reviews the currently available imaging biomarkers and their current clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  2. Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC et al (1996) Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci U S A 93(16):8502–8507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477

    Article  CAS  PubMed  Google Scholar 

  6. Nico B, Benagiano V, Mangieri D, Maruotti N, Vacca A, Ribatti D (2008) Evaluation of microvascular density in tumors: pro and contra. Histol Histopathol 23(5):601–607

    PubMed  Google Scholar 

  7. Yao WW, Zhang H, Ding B, Fu T, Jia H, Pang L et al (2011) Rectal cancer: 3D dynamic contrast-enhanced MRI; correlation with microvascular density and clinicopathological features. Radiol Med 116(3):366–374

    Article  CAS  PubMed  Google Scholar 

  8. Jackson A, Kassner A, Annesley-Williams D, Reid H, Zhu XP, Li KL (2002) Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23(1):7–14

    PubMed  Google Scholar 

  9. Cha S, Lupo JM, Chen MH, Lamborn KR, McDermott MW, Berger MS et al (2007) Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 28(6):1078–1084

    Article  CAS  PubMed  Google Scholar 

  10. Thacker NA, Scott ML, Jackson A (2003) Can dynamic susceptibility contrast magnetic resonance imaging perfusion data be analyzed using a model based on directional flow? J Magn Reson Imaging 17(2):241–255

    Article  CAS  PubMed  Google Scholar 

  11. Jackson A, Li KL, Zhu X (2014) Semi-quantitative parameter analysis of DCE-MRI revisited: monte-carlo simulation, clinical comparisons, and clinical validation of measurement errors in patients with type 2 neurofibromatosis. PLoS One 9(3):e90300

    Article  PubMed Central  PubMed  Google Scholar 

  12. Jackson A (2004) Analysis of dynamic contrast enhanced MRI. Br J Radiol 77(Spec No 2):S154–S166

    Article  PubMed  Google Scholar 

  13. O’Connor JP, Jackson A, Parker GJ, Roberts C, Jayson GC (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9(3):167–177

    Article  PubMed  Google Scholar 

  14. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17(2):357–367

    Article  CAS  PubMed  Google Scholar 

  15. Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92(9):1599–1610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Naish JH, McGrath DM, Bains LJ, Passera K, Roberts C, Watson Y et al (2011) Comparison of dynamic contrast-enhanced MRI and dynamic contrast-enhanced CT biomarkers in bladder cancer. Magn Reson Med 66(1):219–226

    Article  CAS  PubMed  Google Scholar 

  17. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989

    Article  CAS  PubMed  Google Scholar 

  18. Schmainda KM, Rand SD, Joseph AM, Lund R, Ward BD, Pathak AP et al (2004) Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 25(9):1524–1532

    PubMed  Google Scholar 

  19. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1):83–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M et al (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69(13):5296–5300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Emblem KE, Mouridsen K, Bjornerud A, Farrar CT, Jennings D, Borra RJ et al (2013) Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 19(9):1178–1183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. St Lawrence K, Verdecchia K, Elliott J, Tichauer K, Diop M, Hoffman L et al (2013) Kinetic model optimization for characterizing tumour physiology by dynamic contrast-enhanced near-infrared spectroscopy. Phys Med Biol 58(5):1591–1604

    Article  CAS  PubMed  Google Scholar 

  23. Jensen RL, Mumert ML, Gillespie DL, Kinney AY, Schabel MC, Salzman KL (2014) Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro Oncol 16(2):280–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. LaViolette PS, Cohen AD, Prah MA, Rand SD, Connelly J, Malkin MG et al (2013) Vascular change measured with independent component analysis of dynamic susceptibility contrast MRI predicts bevacizumab response in high-grade glioma. Neuro Oncol 15(4):442–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. LaViolette PS, Daun MK, Paulson ES, Schmainda KM (2014) Effect of contrast leakage on the detection of abnormal brain tumor vasculature in high-grade glioma. J Neurooncol 116(3):543–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Liu Z, Liao H, Yin J, Li Y (2014) Using R2* values to evaluate brain tumours on magnetic resonance imaging: preliminary results. Eur Radiol 24(3):693–702

    Article  PubMed  Google Scholar 

  27. Linnik IV, Scott ML, Holliday KF, Woodhouse N, Waterton JC, O’Connor JP et al (2013) Noninvasive tumor hypoxia measurement using magnetic resonance imaging in murine U87 glioma xenografts and in patients with glioblastoma. Magn Reson Med

    Google Scholar 

  28. Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med 45(11):1851–1859

    PubMed  Google Scholar 

  29. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215

    Article  PubMed Central  PubMed  Google Scholar 

  30. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ et al (2004) [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15(1):61–69

    Article  CAS  PubMed  Google Scholar 

  32. Schittenhelm J, Schwab EI, Sperveslage J, Tatagiba M, Meyermann R, Fend F et al (2013) Longitudinal expression analysis of alpha v integrins in human gliomas reveals upregulation of integrin alpha v beta 3 as a negative prognostic factor. J Neuropathol Exp Neurol 72(3):194–210

    Article  CAS  PubMed  Google Scholar 

  33. Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH et al (2009) Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol 11(6):861–870

    Article  PubMed Central  PubMed  Google Scholar 

  34. Liu S, Hsieh WY, Jiang Y, Kim YS, Sreerama SG, Chen X et al (2007) Evaluation of a (99m)Tc-labeled cyclic RGD tetramer for noninvasive imaging integrin alpha(v)beta3-positive breast cancer. Bioconjug Chem 18(2):438–446

    Article  PubMed  Google Scholar 

  35. Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L et al (2007) (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med 48(7):1162–1171

    Article  CAS  PubMed  Google Scholar 

  36. Battle MR, Goggi JL, Allen L, Barnett J, Morrison MS (2011) Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled alphaVbeta3-integrin and alphaV beta5-integrin imaging agent. J Nucl Med 52(3):424–430

    Article  CAS  PubMed  Google Scholar 

  37. Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T (2006) Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 58(3):394–403

    Article  PubMed  Google Scholar 

  38. Erdogan C, Hakyemez B, Yildirim N, Parlak M (2005) Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J Comput Assist Tomogr 29(5):663–667

    Article  PubMed  Google Scholar 

  39. Patankar TF, Haroon HA, Mills SJ, Baleriaux D, Buckley DL, Parker GJ et al (2005) Is volume transfer coefficient (K(trans)) related to histologic grade in human gliomas? AJNR Am J Neuroradiol 26(10):2455–2465

    PubMed  Google Scholar 

  40. Thompson G, Mills SJ, Stivaros SM, Jackson A (2010) Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am 20(3):337–353

    Article  PubMed  Google Scholar 

  41. Yoon JH, Kim JH, Kang WJ, Sohn CH, Choi SH, Yun TJ et al (2014) Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET: concordance and accuracy. Eur Radiol 24(2):380–389

    Article  PubMed  Google Scholar 

  42. Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247(2):490–498

    Article  PubMed Central  PubMed  Google Scholar 

  43. Di Costanzo A, Scarabino T, Trojsi F, Popolizio T, Bonavita S, de Cristofaro M (2014) Recurrent glioblastoma multiforme versus radiation injury: a multiparametric 3-T MR approach. Radiol Med 119:616–624

    Article  PubMed  Google Scholar 

  44. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21(5):901–909

    CAS  PubMed  Google Scholar 

  45. Larsen VA, Simonsen HJ, Law I, Larsson HB, Hansen AE (2013) Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis. Neuroradiology 55(3):361–369

    Article  PubMed  Google Scholar 

  46. Cao Y, Tsien CI, Nagesh V, Junck L, Ten Haken R, Ross BD et al (2006) Survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT [corrected]. Int J Radiat Oncol Biol Phys 64(3):876–885

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Jackson, A., Djoukhadar, I., Coope, D.J. (2016). Imaging Biomarkers of Angiogenesis and the Microvascular Environment in Cerebral Tumors. In: Saba, L., Raz, E. (eds) Neurovascular Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9029-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9029-6_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9028-9

  • Online ISBN: 978-1-4614-9029-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics