Skip to main content

The Immune System in Head and Neck Squamous Cell Carcinoma: Interactions and Therapeutic Opportunities

  • Chapter
  • First Online:
Advances in Tumor Immunology and Immunotherapy

Part of the book series: Current Cancer Research ((CUCR))

  • 2419 Accesses

Abstract

Squamous cell carcinomas of the upper aerodigestive tract exhibit complex interactions with the host immune system that may simultaneously explain resistance to various therapeutic modalities and that may also provide opportunities for therapeutic intervention. The interplay between developing or established malignancy and the host immune system is best understood through a careful analysis of the key components and effector arms of the immune system. These include the complex cellular network of immune modulation as well as tumor-derived factors such as chemokines and cytokines. While the host response to the developing tumor may successfully curtail tumor growth in some cases (immunosurveillance), squamous cell carcinomas of the head and neck are characterized by their ability to create an immunosuppressive environment powerful enough to evade the immune response. It is increasingly apparent that efforts to stimulate a therapeutically effective immune response against established tumors must be coupled with strategies to abrogate this immune-suppressive environment. Preclinical studies and clinical trials have yielded promising results and provide the foundation for further refinements in a broad variety of immunotherapeutic strategies targeting all components of the immune system. Combining such approaches with the established treatment options of surgical resection, radiotherapy, and chemotherapy may ultimately yield substantive improvements in overall survival that to date have been lacking and simultaneously reduce disease-related and treatment-related morbidities for this debilitating and deadly disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29. doi:10.3322/caac.20138.

    PubMed  Google Scholar 

  2. Duray A, Demoulin S, Hubert P, Delvenne P, Saussez S. Immune suppression in head and neck cancers: a review. Clin Dev Immunol. 2010;2010:701657. doi:10.1155/2010/701657.

    PubMed  Google Scholar 

  3. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    PubMed  Google Scholar 

  4. Ho T, Wei Q, Sturgis EM. Epidemiology of carcinogen metabolism genes and risk of squamous cell carcinoma of the head and neck. Head Neck. 2007;29(7):682–99.

    PubMed  Google Scholar 

  5. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol. 2008;26(4):612–9. doi:10.1200/JCO.2007.14.1713.

    PubMed  Google Scholar 

  6. Ryerson AB, Peters ES, Coughlin SS, Chen VW, Gillison ML, Reichman ME, et al. Burden of potentially human papillomavirus-associated cancers of the oropharynx and oral cavity in the US, 1998–2003. Cancer. 2008;113(10 Suppl):2901–9. doi:10.1002/cncr.23745.

    PubMed  Google Scholar 

  7. Auluck A, Hislop G, Bajdik C, Poh C, Zhang L, Rosin M. Trends in oropharyngeal and oral cavity cancer incidence of human papillomavirus (HPV)-related and HPV-unrelated sites in a multicultural population: the British Columbia experience. Cancer. 2010;116(11):2635–44. doi:10.1002/cncr.25087.

    PubMed  Google Scholar 

  8. Hocking JS, Stein A, Conway EL, Regan D, Grulich A, Law M, et al. Head and neck cancer in Australia between 1982 and 2005 show increasing incidence of potentially HPV-associated oropharyngeal cancers. Br J Cancer. 2011;104(5):886–91. doi:10.1038/sj.bjc.6606091.

    PubMed  CAS  Google Scholar 

  9. Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11(8):781–9. doi:10.1016/S1470-2045(10)70017-6.

    PubMed  Google Scholar 

  10. Chaturvedi AK. Epidemiology and clinical aspects of HPV in head and neck cancers. Head Neck Pathol. 2012;6 Suppl 1:S16–24. doi:10.1007/s12105-012-0377-0.

    PubMed  Google Scholar 

  11. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35. doi:10.1056/NEJMoa0912217.

    PubMed  CAS  Google Scholar 

  12. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301. doi:10.1200/JCO.2011.36.4596.

    PubMed  Google Scholar 

  13. Coleman N, Birley HD, Renton AM, Hanna NF, Ryait BK, Byrne M, et al. Immunological events in regressing genital warts. Am J Clin Pathol. 1994;102(6):768–74.

    PubMed  CAS  Google Scholar 

  14. de Jong A, van der Burg SH, Kwappenberg KM, van der Hulst JM, Franken KL, Geluk A, et al. Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res. 2002;62(2):472–9.

    PubMed  Google Scholar 

  15. Welters MJ, de Jong A, van den Eeden SJ, van der Hulst JM, Kwappenberg KM, Hassane S, et al. Frequent display of human papillomavirus type 16 E6-specific memory t-Helper cells in the healthy population as witness of previous viral encounter. Cancer Res. 2003;63(3):636–41.

    PubMed  CAS  Google Scholar 

  16. Le Bon A, Tough DF. Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol. 2002;14(4):432–6.

    PubMed  Google Scholar 

  17. Williams R, Lee DW, Elzey BD, Anderson ME, Hostager BS, Lee JH. Preclinical models of HPV+ and HPV− HNSCC in mice: an immune clearance of HPV+ HNSCC. Head Neck. 2009;31(7):911–8. doi:10.1002/hed.21040.

    PubMed  Google Scholar 

  18. Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol. 2003;21:807–39.

    PubMed  CAS  Google Scholar 

  19. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.

    PubMed  CAS  Google Scholar 

  20. Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J. 1957;1(5022):779–86.

    PubMed  CAS  Google Scholar 

  21. King GN, Healy CM, Glover MT, Kwan JT, Williams DM, Leigh IM, et al. Increased prevalence of dysplastic and malignant lip lesions in renal-transplant recipients. N Engl J Med. 1995;332(16):1052–7. doi:10.1056/NEJM199504203321602.

    PubMed  CAS  Google Scholar 

  22. Harris JP, Penn I. Immunosuppression and the development of malignancies of the upper airway and related structures. Laryngoscope. 1981;91(4):520–8.

    PubMed  CAS  Google Scholar 

  23. Bhatia S, Louie AD, Bhatia R, O'Donnell MR, Fung H, Kashyap A, et al. Solid cancers after bone marrow transplantation. J Clin Oncol. 2001;19(2):464–71.

    PubMed  CAS  Google Scholar 

  24. Avital I, Moreira AL, Klimstra DS, Leversha M, Papadopoulos EB, Brennan M, et al. Donor-derived human bone marrow cells contribute to solid organ cancers developing after bone marrow transplantation. Stem Cells. 2007;25(11):2903–9. doi:10.1634/stemcells.2007-0409.

    PubMed  Google Scholar 

  25. Baker KS, DeFor TE, Burns LJ, Ramsay NK, Neglia JP, Robison LL. New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol. 2003;21(7):1352–8.

    PubMed  Google Scholar 

  26. Curtis RE, Metayer C, Rizzo JD, Socie G, Sobocinski KA, Flowers ME, et al. Impact of chronic GVHD therapy on the development of squamous-cell cancers after hematopoietic stem-cell transplantation: an international case–control study. Blood. 2005;105(10):3802–11. doi:10.1182/blood-2004-09-3411.

    PubMed  CAS  Google Scholar 

  27. Haigentz Jr M. Aerodigestive cancers in HIV infection. Curr Opin Oncol. 2005;17(5):474–8.

    PubMed  Google Scholar 

  28. Singh B, Balwally AN, Shaha AR, Rosenfeld RM, Har-El G, Lucente FE. Upper aerodigestive tract squamous cell carcinoma. The human immunodeficiency virus connection. Arch Otolaryngol Head Neck Surg. 1996;122(6):639–43.

    PubMed  CAS  Google Scholar 

  29. Moyano S, Ordi J, Caballero M, Garcia F, Diaz A, de Sanjose S, et al. Laryngeal squamous cell carcinoma in HIV-positive patients: lack of association with human papillomavirus infection. HIV Med. 2009;10(10):634–9. doi:10.1111/j.1468-1293.2009.00737.x.

    PubMed  CAS  Google Scholar 

  30. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. doi:10.1038/ni1102-991.

    PubMed  CAS  Google Scholar 

  31. Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73:1733–41. doi:10.1158/0008-5472.CAN-12-2384.

    PubMed  CAS  Google Scholar 

  32. Zha Y, Blank C, Gajewski TF. Negative regulation of T-cell function by PD-1. Crit Rev Immunol. 2004;24(4):229–37.

    PubMed  CAS  Google Scholar 

  33. Gastman BR, Atarshi Y, Reichert TE, Saito T, Balkir L, Rabinowich H, et al. Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res. 1999;59(20):5356–64.

    PubMed  CAS  Google Scholar 

  34. Gastman BR, Yin XM, Johnson DE, Wieckowski E, Wang GQ, Watkins SC, et al. Tumor-induced apoptosis of T cells: amplification by a mitochondrial cascade. Cancer Res. 2000;60(24):6811–7.

    PubMed  CAS  Google Scholar 

  35. Kassouf N, Thornhill MH. Oral cancer cell lines can use multiple ligands, including Fas-L, TRAIL and TNF-alpha, to induce apoptosis in Jurkat T cells: possible mechanisms for immune escape by head and neck cancers. Oral Oncol. 2008;44(7):672–82. doi:10.1016/j.oraloncology.2007.08.013.

    PubMed  CAS  Google Scholar 

  36. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103.

    PubMed  CAS  Google Scholar 

  37. Young MR, Young ME, Wright MA. Myelopoiesis-associated suppressor-cell activity in mice with Lewis lung carcinoma tumors: interferon-gamma plus tumor necrosis factor-alpha synergistically reduce suppressor cell activity. Int J Cancer. 1990;46(2):245–50.

    PubMed  CAS  Google Scholar 

  38. Pegoraro L, Fierro MT, Lusso P, Giovinazzo B, Lanino E, Giovarelli M, et al. A novel leukemia T-cell line (PF-382) with phenotypic and functional features of suppressor lymphocytes. J Natl Cancer Inst. 1985;75(2):285–90.

    PubMed  CAS  Google Scholar 

  39. Cirillo C, Montaldo P, Lanciotti M, Parodi MT, Castagnola E, Ponzoni M. Immunosuppressive factors produced by a T cell line derived from acute lymphoblastic leukemia. Boll Ist Sieroter Milan. 1988;67(4):295–308.

    PubMed  CAS  Google Scholar 

  40. Lim SH, Worman CP, Jewell A, Goldstone AH. Production of tumour-derived suppressor factor in patients with acute myeloid leukaemia. Leuk Res. 1991;15(4):263–8.

    PubMed  CAS  Google Scholar 

  41. Kunicka JE, Fox FE, Seki H, Oleszak EL, Platsoucas CD. Hybridoma-derived human suppressor factors: inhibition of growth of tumor cell lines and effect on cytotoxic cells. Hum Antibodies Hybridomas. 1991;2(3):160–9.

    PubMed  CAS  Google Scholar 

  42. Young MR, Wright MA, Coogan M, Young ME, Bagash J. Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression through transforming growth factor beta. Cancer Immunol Immunother. 1992;35(1):14–8.

    PubMed  CAS  Google Scholar 

  43. Moore SC, Shaw MA, Soderberg LS. Transforming growth factor-beta is the major mediator of natural suppressor cells derived from normal bone marrow. J Leukoc Biol. 1992;52:596–601.

    PubMed  CAS  Google Scholar 

  44. Heldin CH. Development and possible clinical use of antagonists for PDGF and TGF-beta. Ups J Med Sci. 2004;109(3):165–78.

    PubMed  Google Scholar 

  45. Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, et al. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer. 1997;74(1):69–74.

    PubMed  CAS  Google Scholar 

  46. Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P, et al. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol. 1999;162(10):5728–37.

    PubMed  CAS  Google Scholar 

  47. Smith CW, Chen Z, Dong G, Loukinova E, Pegram MY, Nicholas-Figueroa L, et al. The host environment promotes the development of primary and metastatic squamous cell carcinomas that constitutively express proinflammatory cytokines IL-1alpha, IL-6, GM-CSF, and KC. Clin Exp Metastasis. 1998;16(7):655–64.

    PubMed  CAS  Google Scholar 

  48. Merchav S, Apte RN, Tatarsky I, Ber R. Effect of plasmacytoma cells on the production of granulocyte-macrophage colony-stimulating activity (GM-CSA) in the spleen of tumor-bearing mice. Exp Hematol. 1987;15(9):995–1000.

    PubMed  CAS  Google Scholar 

  49. Adeegbe D, Serafini P, Bronte V, Zoso A, Ricordi C, Inverardi L. In vivo induction of myeloid suppressor cells and CD4Foxp3 T regulatory cells prolongs skin allograft survival in mice. Cell Transplant. 2011;20:941–54. doi:ct0121adeegbe [pii]10.3727/096368910X540621.

    PubMed  CAS  Google Scholar 

  50. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 2004;64(17):6337–43.

    PubMed  CAS  Google Scholar 

  51. Young MR, Wright MA, Young ME. Antibodies to colony-stimulating factors block Lewis lung carcinoma cell stimulation of immune-suppressive bone marrow cells. Cancer Immunol Immunother. 1991;33:146–52.

    PubMed  CAS  Google Scholar 

  52. Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010;32(6):790–802. doi:S1074-7613(10)00202-5 [pii]10.1016/j.immuni.2010.05.010.

    PubMed  CAS  Google Scholar 

  53. Gutschalk CM, Herold-Mende CC, Fusenig NE, Mueller MM. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor promote malignant growth of cells from head and neck squamous cell carcinomas in vivo. Cancer Res. 2006;66(16):8026–36. doi:10.1158/0008-5472.CAN-06-0158.

    PubMed  CAS  Google Scholar 

  54. Dranoff G. GM-CSF-based cancer vaccines. Immunol Rev. 2002;188:147–54.

    PubMed  CAS  Google Scholar 

  55. Dranoff G. GM-CSF-secreting melanoma vaccines. Oncogene. 2003;22(20):3188–92.

    PubMed  CAS  Google Scholar 

  56. American Society of Clinical Oncology. Recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. J Clin Oncol. 1994;12(11):2471–508.

    Google Scholar 

  57. Carl W, Havens J. The cancer patient with severe mucositis. Curr Rev Pain. 2000;4(3):197–202.

    PubMed  CAS  Google Scholar 

  58. Biron P, Sebban C, Gourmet R, Chvetzoff G, Philip I, Blay JY. Research controversies in management of oral mucositis. Support Care Cancer. 2000;8(1):68–71.

    PubMed  CAS  Google Scholar 

  59. Palmeri S, Leonardi V, Danova M, Porta C, Ferrari S, Fincato G, et al. Prospective, randomized trial of sequential interleukin-3 and granulocyte- or granulocyte-macrophage colony-stimulating factor after standard-dose chemotherapy in cancer patients. Haematologica. 1999;84(11):1016–23.

    PubMed  CAS  Google Scholar 

  60. Staar S, Rudat V, Stuetzer H, Dietz A, Volling P, Schroeder M, et al. Intensified hyperfractionated accelerated radiotherapy limits the additional benefit of simultaneous chemotherapy—results of a multicentric randomized German trial in advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001;50(5):1161–71.

    PubMed  CAS  Google Scholar 

  61. Papaldo P, Lopez M, Cortesi E, Cammilluzzi E, Antimi M, Terzoli E, et al. Addition of either lonidamine or granulocyte colony-stimulating factor does not improve survival in early breast cancer patients treated with high-dose epirubicin and cyclophosphamide. J Clin Oncol. 2003;21(18):3462–8. doi:10.1200/JCO.2003.03.034.

    PubMed  CAS  Google Scholar 

  62. Rapidis AD, Wolf GT. Immunotherapy of head and neck cancer: current and future considerations. J Oncol. 2009;2009:346345. doi:10.1155/2009/346345.

    PubMed  Google Scholar 

  63. Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol. 2006;18:226–32.

    PubMed  Google Scholar 

  64. Nathan CO, Leskov IL, Lin M, Abreo FW, Shi R, Hartman GH, et al. COX-2 expression in dysplasia of the head and neck: correlation with elF4E. Cancer. 2001;92(7):1888–95.

    PubMed  CAS  Google Scholar 

  65. Itoh S, Matsui K, Furuta I, Takano Y. Immunohistochemical study on overexpression of cyclooxygenase-2 in squamous cell carcinoma of the oral cavity: its importance as a prognostic predictor. Oral Oncol. 2003;39(8):829–35.

    PubMed  CAS  Google Scholar 

  66. Hoshikawa H, Goto R, Mori T, Mitani T, Mori N. Expression of prostaglandin E2 receptors in oral squamous cell carcinomas and growth inhibitory effects of an EP3 selective antagonist, ONO-AE3-240. Int J Oncol. 2009;34(3):847–52.

    PubMed  CAS  Google Scholar 

  67. Sombroek CC, Stam AG, Masterson AJ, Lougheed SM, Schakel MJ, Meijer CJ, et al. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol. 2002;168(9):4333–43.

    PubMed  CAS  Google Scholar 

  68. Serafini P. Editorial: PGE2-producing MDSC: a role in tumor progression? J Leukoc Biol. 2010;88(5):827–9. doi:10.1189/jlb.0510303.

    PubMed  CAS  Google Scholar 

  69. Lathers DM, Achille NJ, Young MR. Incomplete Th2 skewing of cytokines in plasma of patients with squamous cell carcinoma of the head and neck. Hum Immunol. 2003;64(12):1160–6.

    PubMed  CAS  Google Scholar 

  70. Pries R, Thiel A, Brocks C, Wollenberg B. Secretion of tumor-promoting and immune suppressive cytokines by cell lines of head and neck squamous cell carcinoma. In Vivo. 2006;20(1):45–8.

    PubMed  CAS  Google Scholar 

  71. Squarize CH, Castilho RM, Sriuranpong V, Pinto Jr DS, Gutkind JS. Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia. 2006;8(9):733–46. doi:10.1593/neo.06274.

    PubMed  CAS  Google Scholar 

  72. Terabe M, Park JM, Berzofsky JA. Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol Immunother. 2004;53(2):79–85.

    PubMed  CAS  Google Scholar 

  73. Keegan AD, Nelms K, White M, Wang LM, Pierce JH, Paul WE. An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell. 1994;76(5):811–20.

    PubMed  CAS  Google Scholar 

  74. Gray MJ, Poljakovic M, Kepka-Lenhart D, Morris Jr SM. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gene. 2005;353(1):98–106.

    PubMed  CAS  Google Scholar 

  75. Kawakami K, Leland P, Puri RK. Structure, function, and targeting of interleukin 4 receptors on human head and neck cancer cells. Cancer Res. 2000;60(11):2981–7.

    PubMed  CAS  Google Scholar 

  76. Gallina G, Dolcetti L, Serafini P, Santo CD, Marigo I, Colombo MP, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8 T cells. J Clin Invest. 2006;116(10):2777–90.

    PubMed  CAS  Google Scholar 

  77. Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P. Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 2012;72(6):1373–83. doi:10.1158/0008-5472.CAN-11-2772.

    PubMed  CAS  Google Scholar 

  78. Trikha M, Corringham R, Klein B, Rossi JF. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res. 2003;9(13):4653–65.

    PubMed  CAS  Google Scholar 

  79. Riedel F, Zaiss I, Herzog D, Gotte K, Naim R, Hormann K. Serum levels of interleukin-6 in patients with primary head and neck squamous cell carcinoma. Anticancer Res. 2005;25(4):2761–5.

    PubMed  CAS  Google Scholar 

  80. Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer. 2007;110(9):1911–28. doi:10.1002/cncr.22999.

    PubMed  CAS  Google Scholar 

  81. Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, et al. IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol. 2004;173(6):3844–54.

    PubMed  CAS  Google Scholar 

  82. Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010;32(6):790–802. doi:S1074-7613(10)00202-5 [pii]10.1016/j.immuni.2010.05.010.

    PubMed  CAS  Google Scholar 

  83. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. doi:10.1038/nri3175.

    PubMed  CAS  Google Scholar 

  84. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood. 2002;100(1):230–7.

    PubMed  CAS  Google Scholar 

  85. Hayashi T, Hideshima T, Akiyama M, Raje N, Richardson P, Chauhan D, et al. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood. 2003;102(4):1435–42.

    PubMed  CAS  Google Scholar 

  86. Shang ZJ, Li ZB, Li JR. VEGF is up-regulated by hypoxic stimulation and related to tumour angiogenesis and severity of disease in oral squamous cell carcinoma: in vitro and in vivo studies. Int J Oral Maxillofac Surg. 2006;35(6):533–8. doi:10.1016/j.ijom.2005.09.006.

    PubMed  Google Scholar 

  87. Liang X, Yang D, Hu J, Hao X, Gao J, Mao Z. Hypoxia inducible factor-alpha expression correlates with vascular endothelial growth factor-C expression and lymphangiogenesis/angiogenesis in oral squamous cell carcinoma. Anticancer Res. 2008;28(3A):1659–66.

    PubMed  Google Scholar 

  88. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.

    PubMed  CAS  Google Scholar 

  89. Toi M, Kondo S, Suzuki H, Yamamoto Y, Inada K, Imazawa T, et al. Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer. 1996;77(6):1101–6.

    PubMed  CAS  Google Scholar 

  90. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66.

    PubMed  CAS  Google Scholar 

  91. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4(12):941–52.

    PubMed  CAS  Google Scholar 

  92. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6(4):409–21.

    PubMed  CAS  Google Scholar 

  93. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007;67(23):11438–46. doi:10.1158/0008-5472.CAN-07-1882.

    PubMed  CAS  Google Scholar 

  94. Strauss L, Volland D, Kunkel M, Reichert TE. Dual role of VEGF family members in the pathogenesis of head and neck cancer (HNSCC): possible link between angiogenesis and immune tolerance. Med Sci Monit. 2005;11(8):BR280–92.

    PubMed  CAS  Google Scholar 

  95. Murooka TT, Rahbar R, Fish EN. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation. Biochem Biophys Res Commun. 2009;387(2):381–6. doi:10.1016/j.bbrc.2009.07.035.

    PubMed  CAS  Google Scholar 

  96. Chakraborty K, Bose A, Chakraborty T, Sarkar K, Goswami S, Pal S, et al. Restoration of dysregulated CC chemokine signaling for monocyte/macrophage chemotaxis in head and neck squamous cell carcinoma patients by neem leaf glycoprotein maximizes tumor cell cytotoxicity. Cell Mol Immunol. 2010;7(5):396–408. doi:10.1038/cmi.2010.29.

    PubMed  CAS  Google Scholar 

  97. Kross KW, Heimdal JH, Olsnes C, Olofson J, Aarstad HJ. Tumour-associated macrophages secrete IL-6 and MCP-1 in head and neck squamous cell carcinoma tissue. Acta Otolaryngol. 2007;127(5):532–9. doi:10.1080/00016480600951384.

    PubMed  CAS  Google Scholar 

  98. Bektas-Kayhan K, Unur M, Boy-Metin Z, Cakmakoglu B. MCP-1 and CCR2 gene variants in oral squamous cell carcinoma. Oral Dis. 2012;18(1):55–9. doi:10.1111/j.1601-0825.2011.01843.x.

    PubMed  CAS  Google Scholar 

  99. Han L, Jiang B, Wu H, Wang X, Tang X, Huang J, et al. High expression of CXCR2 is associated with tumorigenesis, progression, and prognosis of laryngeal squamous cell carcinoma. Med Oncol. 2012;29(4):2466–72. doi:10.1007/s12032-011-0152-1.

    PubMed  CAS  Google Scholar 

  100. Tan CT, Chu CY, Lu YC, Chang CC, Lin BR, Wu HH, et al. CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-1 pathway. Carcinogenesis. 2008;29(8):1519–27. doi:10.1093/carcin/bgn108.

    PubMed  CAS  Google Scholar 

  101. Rehman AO, Wang CY. CXCL12/SDF-1 alpha activates NF-kappaB and promotes oral cancer invasion through the Carma3/Bcl10/Malt1 complex. Int J Oral Sci. 2009;1(3):105–18. doi:10.4248/IJOS.09059.

    PubMed  Google Scholar 

  102. Wang N, Wu QL, Fang Y, Mai HQ, Zeng MS, Shen GP, et al. Expression of chemokine receptor CXCR4 in nasopharyngeal carcinoma: pattern of expression and correlation with clinical outcome. J Transl Med. 2005;3:26. doi:10.1186/1479-5876-3-26.

    PubMed  Google Scholar 

  103. Zlotnik A. Involvement of chemokine receptors in organ-specific metastasis. Contrib Microbiol. 2006;13:191–9. doi:10.1159/000092973.

    PubMed  CAS  Google Scholar 

  104. Nath A, Chattopadhya S, Chattopadhyay U, Sharma NK. Macrophage inflammatory protein (MIP)1alpha and MIP1beta differentially regulate release of inflammatory cytokines and generation of tumoricidal monocytes in malignancy. Cancer Immunol Immunother. 2006;55(12):1534–41. doi:10.1007/s00262-006-0149-3.

    PubMed  CAS  Google Scholar 

  105. Vaday GG, Peehl DM, Kadam PA, Lawrence DM. Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate. 2006;66(2):124–34. doi:10.1002/pros.20306.

    PubMed  CAS  Google Scholar 

  106. Cozar JM, Canton J, Tallada M, Concha A, Cabrera T, Garrido F, et al. Analysis of NK cells and chemokine receptors in tumor infiltrating CD4 T lymphocytes in human renal carcinomas. Cancer Immunol Immunother. 2005;54(9):858–66. doi:10.1007/s00262-004-0646-1.

    PubMed  CAS  Google Scholar 

  107. Sun Y, Cheng Z, Ma L, Pei G. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem. 2002;277(51):49212–9. doi:10.1074/jbc.M207294200.

    PubMed  CAS  Google Scholar 

  108. Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, et al. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res. 2002;62(4):1093–102.

    PubMed  CAS  Google Scholar 

  109. Rainwater SM, Wu X, Nduati R, Nedellec R, Mosier D, John-Stewart G, et al. Cloning and characterization of functional subtype A HIV-1 envelope variants transmitted through breastfeeding. Curr HIV Res. 2007;5(2):189–97.

    PubMed  CAS  Google Scholar 

  110. Aoki MN, Da Silva do Amaral Herrera AC, Amarante MK, do Carneiro JL, Fungaro MH, Watanabe MA. CCR5 and p53 codon 72 gene polymorphisms: implications in breast cancer development. Int J Mol Med. 2009;23(3):429–35.

    PubMed  CAS  Google Scholar 

  111. Davidson B, Dong HP, Holth A, Berner A, Risberg B. The chemokine receptor CXCR4 is more frequently expressed in breast compared to other metastatic adenocarcinomas in effusions. Breast J. 2008;14(5):476–82. doi:10.1111/j.1524-4741.2008.00625.x.

    PubMed  Google Scholar 

  112. Darbon JM. A new model of metastatic dissemination of breast cancer bringing into play mesenchymal stem cells. Bull Cancer. 2007;94(12):1035–6. doi:10.1684/bdc.2007.0523.

    PubMed  Google Scholar 

  113. Walker UA. Antiretroviral therapy-induced liver alterations. Curr Opin HIV AIDS. 2007;2(4):293–8. doi:10.1097/COH.0b013e328122dbaa.

    PubMed  Google Scholar 

  114. Levina V, Nolen BM, Marrangoni AM, Cheng P, Marks JR, Szczepanski MJ, et al. Role of eotaxin-1 signaling in ovarian cancer. Clin Cancer Res. 2009;15(8):2647–56. doi:10.1158/1078-0432.CCR-08-2024.

    PubMed  CAS  Google Scholar 

  115. Berghuis D, Santos SJ, Baelde HJ, Taminiau AH, Egeler RM, Schilham MW, et al. Pro-inflammatory chemokine-chemokine receptor interactions within the Ewing sarcoma microenvironment determine CD8(+) T-lymphocyte infiltration and affect tumour progression. J Pathol. 2011;223(3):347–57. doi:10.1002/path.2819.

    PubMed  CAS  Google Scholar 

  116. Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ, Kuo PC. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis. 2011;32(4):477–87. doi:10.1093/carcin/bgr009.

    PubMed  CAS  Google Scholar 

  117. Yaal-Hahoshen N, Shina S, Leider-Trejo L, Barnea I, Shabtai EL, Azenshtein E, et al. The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clin Cancer Res. 2006;12(15):4474–80. doi:10.1158/1078-0432.CCR-06-0074.

    PubMed  CAS  Google Scholar 

  118. Nesbeth Y, Scarlett U, Cubillos-Ruiz J, Martinez D, Engle X, Turk MJ, et al. CCL5-mediated endogenous antitumor immunity elicited by adoptively transferred lymphocytes and dendritic cell depletion. Cancer Res. 2009;69(15):6331–8. doi:10.1158/0008-5472.CAN-08-4329.

    PubMed  CAS  Google Scholar 

  119. Flanagan K, Moroziewicz D, Kwak H, Horig H, Kaufman HL. The lymphoid chemokine CCL21 costimulates naive T cell expansion and Th1 polarization of non-regulatory CD4+ T cells. Cell Immunol. 2004;231(1–2):75–84. doi:10.1016/j.cellimm.2004.12.006.

    PubMed  CAS  Google Scholar 

  120. Yamano T, Kaneda Y, Hiramatsu SH, Huang S, Tran AN, Giuliano AE, et al. Immunity against breast cancer by TERT DNA vaccine primed with chemokine CCL21. Cancer Gene Ther. 2007;14(5):451–9. doi:10.1038/sj.cgt.7701035.

    PubMed  CAS  Google Scholar 

  121. Wu S, Xing W, Peng J, Yuan X, Zhao X, Lei P, et al. Tumor transfected with CCL21 enhanced reactivity and apoptosis resistance of human monocyte-derived dendritic cells. Immunobiology. 2008;213(5):417–26. doi:10.1016/j.imbio.2007.10.003.

    PubMed  CAS  Google Scholar 

  122. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell. 2007;11(6):526–38. doi:10.1016/j.ccr.2007.04.020.

    PubMed  CAS  Google Scholar 

  123. Wang J, Xi L, Hunt JL, Gooding W, Whiteside TL, Chen Z, et al. Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res. 2004;64(5):1861–6.

    PubMed  CAS  Google Scholar 

  124. Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science. 2010;328(5979):749–52. doi:10.1126/science.1185837.

    PubMed  CAS  Google Scholar 

  125. Viola A, Sarukhan A, Bronte V, Molon B. The pros and cons of chemokines in tumor immunology. Trends Immunol. 2012;33:496–504. doi:10.1016/j.it.2012.05.007.

    PubMed  CAS  Google Scholar 

  126. Heimdal JH, Olsnes C, Olofsson J, Aarstad HJ. Monocyte and monocyte-derived macrophage secretion of MCP-1 in co-culture with autologous malignant and benign control fragment spheroids. Cancer Immunol Immunother. 2001;50(6):300–6.

    PubMed  CAS  Google Scholar 

  127. Brown CE, Vishwanath RP, Aguilar B, Starr R, Najbauer J, Aboody KS, et al. Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. J Immunol. 2007;179(5):3332–41.

    PubMed  CAS  Google Scholar 

  128. Loberg RD, Day LL, Harwood J, Ying C, St John LN, Giles R, et al. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia. 2006;8(7):578–86. doi:10.1593/neo.06280.

    PubMed  CAS  Google Scholar 

  129. Bailey C, Negus R, Morris A, Ziprin P, Goldin R, Allavena P, et al. Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin Exp Metastasis. 2007;24(2):121–30. doi:10.1007/s10585-007-9060-3.

    PubMed  CAS  Google Scholar 

  130. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000;6(8):3282–9.

    PubMed  CAS  Google Scholar 

  131. Huang B, Lei Z, Zhao J, Gong W, Liu J, Chen Z, et al. CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett. 2007;252(1):86–92. doi:10.1016/j.canlet.2006.12.012.

    PubMed  CAS  Google Scholar 

  132. Molon B, Viola A, Bronte V. Smoothing T cell roads to the tumor: chemokine post-translational regulation. Oncoimmunology. 2012;1(3):390–2. doi:10.4161/onci.19069.

    PubMed  Google Scholar 

  133. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 2011;208(10):1949–62. doi:10.1084/jem.20101956.

    PubMed  CAS  Google Scholar 

  134. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R, Anderson RL, et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res. 2009;69(14):5996–6004. doi:10.1158/0008-5472.CAN-08-4619.

    PubMed  CAS  Google Scholar 

  135. Velasco-Velazquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP, et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 2012;72(15):3839–50. doi:10.1158/0008-5472.CAN-11-3917.

    PubMed  CAS  Google Scholar 

  136. Ogino T, Shigyo H, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, et al. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res. 2006;66(18):9281–9. doi:10.1158/0008-5472.CAN-06-0488.

    PubMed  CAS  Google Scholar 

  137. Wolf GT, Hudson JL, Peterson KA, Miller HL, McClatchey KD. Lymphocyte subpopulations infiltrating squamous carcinomas of the head and neck: correlations with extent of tumor and prognosis. Otolaryngol Head Neck Surg. 1986;95(2):142–52.

    PubMed  CAS  Google Scholar 

  138. Junker N, Kvistborg P, Kollgaard T, Straten P, Andersen MH, Svane IM. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures. Cell Immunol. 2012;273(1):1–9. doi:10.1016/j.cellimm.2011.12.004.

    PubMed  CAS  Google Scholar 

  139. Marcus B, Arenberg D, Lee J, Kleer C, Chepeha DB, Schmalbach CE, et al. Prognostic factors in oral cavity and oropharyngeal squamous cell carcinoma. Cancer. 2004;101(12):2779–87. doi:10.1002/cncr.20701.

    PubMed  Google Scholar 

  140. Kuss I, Hathaway B, Ferris RL, Gooding W, Whiteside TL. Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004;10(11):3755–62. doi:10.1158/1078-0432.CCR-04-0054.

    PubMed  CAS  Google Scholar 

  141. Turksma A, Bontkes H, van den Heuvel H, de Gruijl T, von Blomberg B, Braakhuis B, et al. Effector memory T-cell frequencies in relation to tumour stage, location and HPV status in HNSCC patients. Oral Dis. 2012. doi:10.1111/odi.12037.

    PubMed  Google Scholar 

  142. Eura M, Ogi K, Chikamatsu K, Lee KD, Nakano K, Masuyama K, et al. Expression of the MAGE gene family in human head-and-neck squamous-cell carcinomas. Int J Cancer. 1995;64(5):304–8.

    PubMed  CAS  Google Scholar 

  143. Kienstra MA, Neel HB, Strome SE, Roche P. Identification of NY-ESO-1, MAGE-1, and MAGE-3 in head and neck squamous cell carcinoma. Head Neck. 2003;25(6):457–63. doi:10.1002/hed.10223.

    PubMed  Google Scholar 

  144. Albers A, Abe K, Hunt J, Wang J, Lopez-Albaitero A, Schaefer C, et al. Antitumor activity of human papillomavirus type 16 E7-specific T cells against virally infected squamous cell carcinoma of the head and neck. Cancer Res. 2005;65(23):11146–55. doi:10.1158/0008-5472.CAN-05-0772.

    PubMed  CAS  Google Scholar 

  145. Devaraj K, Gillison ML, Wu TC. Development of HPV vaccines for HPV-associated head and neck squamous cell carcinoma. Crit Rev Oral Biol Med. 2003;14(5):345–62.

    PubMed  Google Scholar 

  146. Gelbard A, Garnett CT, Abrams SI, Patel V, Gutkind JS, Palena C, et al. Combination chemotherapy and radiation of human squamous cell carcinoma of the head and neck augments CTL-mediated lysis. Clin Cancer Res. 2006;12(6):1897–905. doi:10.1158/1078-0432.CCR-05-1761.

    PubMed  CAS  Google Scholar 

  147. Liu K, Nussenzweig MC. Origin and development of dendritic cells. Immunol Rev. 2010;234(1):45–54. doi:10.1111/j.0105-2896.2009.00879.x.

    PubMed  CAS  Google Scholar 

  148. Valladeau J, Saeland S. Cutaneous dendritic cells. Semin Immunol. 2005;17(4):273–83. doi:10.1016/j.smim.2005.05.009.

    PubMed  CAS  Google Scholar 

  149. Cruchley AT, Williams DM, Farthing PM, Speight PM, Lesch CA, Squier CA. Langerhans cell density in normal human oral mucosa and skin: relationship to age, smoking and alcohol consumption. J Oral Pathol Med. 1994;23(2):55–9.

    PubMed  CAS  Google Scholar 

  150. Boyle JO, Gumus ZH, Kacker A, Choksi VL, Bocker JM, Zhou XK, et al. Effects of cigarette smoke on the human oral mucosal transcriptome. Cancer Prev Res (Phila). 2010;3(3):266–78. doi:10.1158/1940-6207.CAPR-09-0192.

    CAS  Google Scholar 

  151. Girod SC, Kuhnast T, Ulrich S, Krueger GR. Langerhans cells in epithelial tumors and benign lesions of the oropharynx. In Vivo. 1994;8(4):543–7.

    PubMed  CAS  Google Scholar 

  152. Albuquerque Jr RL, Miguel MC, Costa AL, Souza LB. Correlation of c-erbB-2 and S-100 expression with the malignancy grading and anatomical site in oral squamous cell carcinoma. Int J Exp Pathol. 2003;84(6):259–65.

    PubMed  Google Scholar 

  153. Yilmaz T, Gedikoglu G, Celik A, Onerci M, Turan E. Prognostic significance of Langerhans cell infiltration in cancer of the larynx. Otolaryngol Head Neck Surg. 2005;132(2):309–16. doi:10.1016/j.otohns.2004.04.018.

    PubMed  Google Scholar 

  154. Gallo O, Libonati GA, Gallina E, Fini-Storchi O, Giannini A, Urso C, et al. Langerhans cells related to prognosis in patients with laryngeal carcinoma. Arch Otolaryngol Head Neck Surg. 1991;117(9):1007–10.

    PubMed  CAS  Google Scholar 

  155. Li X, Takahashi Y, Sakamoto K, Nakashima T. Expression of dendritic cell phenotypic antigens in cervical lymph nodes of patients with hypopharyngeal and laryngeal carcinoma. J Laryngol Otol Suppl. 2009;31:5–10.

    PubMed  Google Scholar 

  156. Hoffmann TK, Muller-Berghaus J, Ferris RL, Johnson JT, Storkus WJ, Whiteside TL. Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res. 2002;8(6):1787–93.

    PubMed  Google Scholar 

  157. Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, et al. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony- stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer. 1997;74(1):69–74.

    PubMed  CAS  Google Scholar 

  158. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MRI. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res. 1995;1(1):95–103.

    PubMed  CAS  Google Scholar 

  159. Wu G, Morris Jr SM. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

    PubMed  CAS  Google Scholar 

  160. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907–16.

    PubMed  CAS  Google Scholar 

  161. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 2004;64(16):5839–49.

    PubMed  CAS  Google Scholar 

  162. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol. 2002;168(2):689–95.

    PubMed  CAS  Google Scholar 

  163. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor- bearing mice. J Immunol. 2003;170(1):270–8.

    PubMed  CAS  Google Scholar 

  164. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of antigen is a mechanism of CD8(+) T cell tolerance in cancer. Nat Med. 2007;13(7):828–35.

    PubMed  CAS  Google Scholar 

  165. Rosbe KW, Prazma J, Petrusz P, Mims W, Ball SS, Weissler MC. Immunohistochemical characterization of nitric oxide synthase activity in squamous cell carcinoma of the head and neck. Otolaryngol Head Neck Surg. 1995;113(5):541–9.

    PubMed  CAS  Google Scholar 

  166. Bentz BG, Haines 3rd GK, Radosevich JA. Increased protein nitrosylation in head and neck squamous cell carcinogenesis. Head Neck. 2000;22(1):64–70.

    PubMed  CAS  Google Scholar 

  167. Heimdal JH, Aarstad HJ, Olofsson J. Peripheral blood T-lymphocyte and monocyte function and survival in patients with head and neck carcinoma. Laryngoscope. 2000;110(3 Pt 1):402–7.

    PubMed  CAS  Google Scholar 

  168. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6(5):1755–66.

    PubMed  CAS  Google Scholar 

  169. Young MR, Cigal M. Tumor skewing of CD34+ cell differentiation from a dendritic cell pathway into endothelial cells. Cancer Immunol Immunother. 2006;55(5):558–68.

    PubMed  Google Scholar 

  170. Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, et al. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother. 2004;53(2):64–72.

    PubMed  CAS  Google Scholar 

  171. To WC, Wood BG, Krauss JC, Strome M, Esclamado RM, Lavertu P, et al. Systemic adoptive T-cell immunotherapy in recurrent and metastatic carcinoma of the head and neck: a phase 1 study. Arch Otolaryngol Head Neck Surg. 2000;126(10):1225–31.

    PubMed  CAS  Google Scholar 

  172. Chang AE, Li Q, Jiang G, Teknos TN, Chepeha DB, Bradford CR. Generation of vaccine-primed lymphocytes for the treatment of head and neck cancer. Head Neck. 2003;25(3):198–209.

    PubMed  Google Scholar 

  173. Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 2005;175(7):4583–92.

    PubMed  CAS  Google Scholar 

  174. Kusmartsev S, Gabrilovich DI. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol. 2005;174(8):4880–91.

    PubMed  CAS  Google Scholar 

  175. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203(12):2691–702.

    PubMed  CAS  Google Scholar 

  176. Pandit R, Lathers DM, Beal NM, Garrity T, Young MR. CD34+ immune suppressive cells in the peripheral blood of patients with head and neck cancer. Ann Otol Rhinol Laryngol. 2000;109(8 Pt 1):749–54.

    PubMed  CAS  Google Scholar 

  177. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res. 1995;1(1):95–103.

    PubMed  CAS  Google Scholar 

  178. Wiers K, Wright MA, Vellody K, Young MR. Failure of tumor-reactive lymph node cells to kill tumor in the presence of immune-suppressive CD34+ cells can be overcome with vitamin D3 treatment to diminish CD34+ cell levels. Clin Exp Metastasis. 1998;16(3):275–82.

    PubMed  CAS  Google Scholar 

  179. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90.

    PubMed  CAS  Google Scholar 

  180. Pahler JC, Tazzyman S, Erez N, Chen YY, Murdoch C, Nozawa H, et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–40.

    PubMed  CAS  Google Scholar 

  181. Xiang M, Gu Y, Zhao F, Lu H, Chen S, Yin L. Mast cell tryptase promotes breast cancer migration and invasion. Oncol Rep. 2010;23(3):615–9.

    PubMed  CAS  Google Scholar 

  182. Mohamed MM, Cavallo-Medved D, Rudy D, Anbalagan A, Moin K, Sloane BF. Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes. Cell Physiol Biochem. 2010;25(2–3):315–24. doi:000276564 [pii]10.1159/000276564.

    PubMed  CAS  Google Scholar 

  183. Lathers DM, Young MR. Increased aberrance of cytokine expression in plasma of patients with more advanced squamous cell carcinoma of the head and neck. Cytokine. 2004;25(5):220–8. doi:10.1016/j.cyto.2003.11.005.

    PubMed  CAS  Google Scholar 

  184. Jonuleit H, Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol. 2003;171(12):6323–7.

    PubMed  CAS  Google Scholar 

  185. Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity. Curr Opin Immunol. 2004;16(2):157–62.

    PubMed  CAS  Google Scholar 

  186. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL. Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer. 2005;92(5):913–20.

    PubMed  CAS  Google Scholar 

  187. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol. 2004;172(9):5213–21.

    PubMed  CAS  Google Scholar 

  188. Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, et al. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol. 2004;173(11):6526–31.

    PubMed  CAS  Google Scholar 

  189. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.

    PubMed  CAS  Google Scholar 

  190. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res. 2003;9(2):606–12.

    PubMed  Google Scholar 

  191. Okita R, Saeki T, Takashima S, Yamaguchi Y, Toge T. CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep. 2005;14(5):1269–73.

    PubMed  CAS  Google Scholar 

  192. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-{beta}1 mediates suppression in the tumor microenvironment. Clin Cancer Res. 2007;13(15):4345–54.

    PubMed  CAS  Google Scholar 

  193. Unitt E, Rushbrook SM, Marshall A, Davies S, Gibbs P, Morris LS, et al. Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology. 2005;41(4):722–30.

    PubMed  CAS  Google Scholar 

  194. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65(6):2457–64.

    PubMed  CAS  Google Scholar 

  195. Zhang YL, Li J, Mo HY, Qiu F, Zheng LM, Qian CN, et al. Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer. 2010;9:4. doi:10.1186/1476-4598-9-4.

    PubMed  Google Scholar 

  196. Distel LV, Fickenscher R, Dietel K, Hung A, Iro H, Zenk J, et al. Tumour infiltrating lymphocytes in squamous cell carcinoma of the oro- and hypopharynx: prognostic impact may depend on type of treatment and stage of disease. Oral Oncol. 2009;45(10):e167–74. doi:10.1016/j.oraloncology.2009.05.640.

    PubMed  CAS  Google Scholar 

  197. Pretscher D, Distel LV, Grabenbauer GG, Wittlinger M, Buettner M, Niedobitek G. Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer. 2009;9:292. doi:10.1186/1471-2407-9-292.

    PubMed  Google Scholar 

  198. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006;12(2):465–72. doi:10.1158/1078-0432.CCR-05-1886.

    PubMed  CAS  Google Scholar 

  199. Zingg U, Montani M, Frey DM, Dirnhofer S, Esterman AJ, Went P, et al. Tumour-infiltrating lymphocytes and survival in patients with adenocarcinoma of the oesophagus. Eur J Surg Oncol. 2010;36(7):670–7. doi:10.1016/j.ejso.2010.05.012.

    PubMed  CAS  Google Scholar 

  200. Morgan ME, van Bilsen JH, Bakker AM, Heemskerk B, Schilham MW, Hartgers FC, et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum Immunol. 2005;66(1):13–20. doi:10.1016/j.humimm.2004.05.016.

    PubMed  CAS  Google Scholar 

  201. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol. 2007;37(1):129–38. doi:10.1002/eji.200636435.

    PubMed  CAS  Google Scholar 

  202. Kmieciak M, Gowda M, Graham L, Godder K, Bear HD, Marincola FM, et al. Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. J Transl Med. 2009;7:89. doi:10.1186/1479-5876-7-89.

    PubMed  Google Scholar 

  203. Magg T, Mannert J, Ellwart JW, Schmid I, Albert MH. Subcellular localization of FOXP3 in human regulatory and nonregulatory T cells. Eur J Immunol. 2012;42(6):1627–38. doi:10.1002/eji.201141838.

    PubMed  CAS  Google Scholar 

  204. Weed DT, Walker G, De La Fuente AC, Nazarian R, Vella JL, et al. FOXP3 Subcellular localization predicts recurrence in oral squamous cell carcinoma. PLoS ONE. 2013;8(8):e71908. doi:10.1371/journal.pone.0071908.

    PubMed  CAS  Google Scholar 

  205. Kuss I, Hathaway B, Ferris RL, Gooding W, Whiteside TL. Imbalance in absolute counts of T lymphocyte subsets in patients with head and neck cancer and its relation to disease. Adv Otorhinolaryngol. 2005;62:161–72.

    PubMed  CAS  Google Scholar 

  206. Gomez JA, Sun W, Gama V, Hajkova D, Yoshida T, Wu Z, et al. The C-terminus of interferon gamma receptor beta chain (IFNgammaR2) has antiapoptotic activity as a Bax inhibitor. Cancer Biol Ther. 2009;8(18):1771–86.

    PubMed  CAS  Google Scholar 

  207. Manchanda P, Sharma SC, Das SN. Differential regulation of IL-2 and IL-4 in patients with tobacco-related oral squamous cell carcinoma. Oral Dis. 2006;12(5):455–62. doi:10.1111/j.1601-0825.2005.01220.x.

    PubMed  CAS  Google Scholar 

  208. Farace F, Angevin E, Vanderplancke J, Escudier B, Triebel F. The decreased expression of CD3 zeta chains in cancer patients is not reversed by IL-2 administration. Int J Cancer. 1994;59(6):752–5.

    PubMed  CAS  Google Scholar 

  209. Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006;16(1):53–65.

    PubMed  CAS  Google Scholar 

  210. Dunn G, Oliver KM, Loke D, Stafford ND, Greenman J. Dendritic cells and HNSCC: a potential treatment option? (Review). Oncol Rep. 2005;13(1):3–10.

    PubMed  Google Scholar 

  211. Meneses A, Verastegui E, Barrera JL, de la Garza J, Hadden JW. Lymph node histology in head and neck cancer: impact of immunotherapy with IRX-2. Int Immunopharmacol. 2003;3(8):1083–91. doi:10.1016/S1567-5769(03)00017-1.

    PubMed  CAS  Google Scholar 

  212. Mancino A, Schioppa T, Larghi P, Pasqualini F, Nebuloni M, Chen IH, et al. Divergent effects of hypoxia on dendritic cell functions. Blood. 2008;112(9):3723–34. doi:10.1182/blood-2008-02-142091.

    PubMed  CAS  Google Scholar 

  213. Elia AR, Cappello P, Puppo M, Fraone T, Vanni C, Eva A, et al. Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J Leukoc Biol. 2008;84(6):1472–82. doi:10.1189/jlb.0208082.

    PubMed  CAS  Google Scholar 

  214. Yang M, Ma C, Liu S, Shao Q, Gao W, Song B, et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol. 2010;88(2):165–71. doi:10.1038/icb.2009.77.

    PubMed  CAS  Google Scholar 

  215. Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg. 1989;210(4):474–84. discussion 484–75.

    PubMed  CAS  Google Scholar 

  216. Fishman MN, Thompson JA, Pennock GK, Gonzalez R, Diez LM, Daud AI, et al. Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin Cancer Res. 2011;17(24):7765–75. doi:10.1158/1078-0432.CCR-11-1817.

    PubMed  CAS  Google Scholar 

  217. Rossig C, Brenner MK. Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther. 2004;10(1):5–18. doi:10.1016/j.ymthe.2004.04.014.

    PubMed  CAS  Google Scholar 

  218. Shirakura Y, Mizuno Y, Wang L, Imai N, Amaike C, Sato E, et al. T-cell receptor gene therapy targeting melanoma-associated antigen-A4 inhibits human tumor growth in non-obese diabetic/SCID/gammacnull mice. Cancer Sci. 2012;103(1):17–25. doi:10.1111/j.1349-7006.2011.02111.x.

    PubMed  CAS  Google Scholar 

  219. Linnemann C, Schumacher TN, Bendle GM. T-cell receptor gene therapy: critical parameters for clinical success. J Invest Dermatol. 2011;131(9):1806–16. doi:10.1038/jid.2011.160.

    PubMed  CAS  Google Scholar 

  220. Jorritsma A, Schotte R, Coccoris M, de Witte MA, Schumacher TN. Prospects and limitations of T cell receptor gene therapy. Curr Gene Ther. 2011;11(4):276–87.

    PubMed  CAS  Google Scholar 

  221. Davis JL, Theoret MR, Zheng Z, Lamers CH, Rosenberg SA, Morgan RA. Development of human anti-murine T-cell receptor antibodies in both responding and nonresponding patients enrolled in TCR gene therapy trials. Clin Cancer Res. 2010;16(23):5852–61. doi:10.1158/1078-0432.CCR-10-1280.

    PubMed  CAS  Google Scholar 

  222. Ochi T, Fujiwara H, Yasukawa M. Application of adoptive T-cell therapy using tumor antigen-specific T-cell receptor gene transfer for the treatment of human leukemia. J Biomed Biotechnol. 2010;2010:521248. doi:10.1155/2010/521248.

    PubMed  Google Scholar 

  223. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med. 2010;16(5):565–70. doi:10.1038/nm.2128. 561–70.

    PubMed  CAS  Google Scholar 

  224. Leisegang M, Turqueti-Neves A, Engels B, Blankenstein T, Schendel DJ, Uckert W, et al. T-cell receptor gene-modified T cells with shared renal cell carcinoma specificity for adoptive T-cell therapy. Clin Cancer Res. 2010;16(8):2333–43. doi:10.1158/1078-0432.CCR-09-2897.

    PubMed  CAS  Google Scholar 

  225. Govers C, Sebestyen Z, Coccoris M, Willemsen RA, Debets R. T cell receptor gene therapy: strategies for optimizing transgenic TCR pairing. Trends Mol Med. 2010;16(2):77–87. doi:10.1016/j.molmed.2009.12.004.

    PubMed  CAS  Google Scholar 

  226. Bendle GM, Haanen JB, Schumacher TN. Preclinical development of T cell receptor gene therapy. Curr Opin Immunol. 2009;21(2):209–14. doi:10.1016/j.coi.2009.02.007.

    PubMed  CAS  Google Scholar 

  227. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69(6):2514–22. doi:10.1158/0008-5472.CAN-08-4709.

    PubMed  CAS  Google Scholar 

  228. Porta C, Paglino C, Imarisio I, Ganini C, Pedrazzoli P. Immunological effects of multikinase inhibitors for kidney cancer: a clue for integration with cellular therapies? J Cancer. 2011;2:333–8.

    PubMed  CAS  Google Scholar 

  229. Choong NW, Kozloff M, Taber D, Hu HS, Wade 3rd J, Ivy P, et al. Phase II study of sunitinib malate in head and neck squamous cell carcinoma. Invest New Drugs. 2010;28(5):677–83. doi:10.1007/s10637-009-9296-7.

    PubMed  CAS  Google Scholar 

  230. Fountzilas G, Fragkoulidi A, Kalogera-Fountzila A, Nikolaidou M, Bobos M, Calderaro J, et al. A phase II study of sunitinib in patients with recurrent and/or metastatic non-nasopharyngeal head and neck cancer. Cancer Chemother Pharmacol. 2010;65(4):649–60. doi:10.1007/s00280-009-1070-1.

    PubMed  CAS  Google Scholar 

  231. Machiels JP, Henry S, Zanetta S, Kaminsky MC, Michoux N, Rommel D, et al. Phase II study of sunitinib in recurrent or metastatic squamous cell carcinoma of the head and neck: GORTEC 2006–01. J Clin Oncol. 2010;28(1):21–8. doi:10.1200/JCO.2009.23.8584.

    PubMed  CAS  Google Scholar 

  232. Kao J, Packer S, Vu HL, Schwartz ME, Sung MW, Stock RG, et al. Phase 1 study of concurrent sunitinib and image-guided radiotherapy followed by maintenance sunitinib for patients with oligometastases: acute toxicity and preliminary response. Cancer. 2009;115(15):3571–80. doi:10.1002/cncr.24412.

    PubMed  CAS  Google Scholar 

  233. Garrity T, Pandit R, Wright MA, Benefield J, Keni S, Young MR. Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int J Cancer. 1997;73(5):663–9.

    PubMed  CAS  Google Scholar 

  234. Young MR, Wright MA, Vellody K, Lathers DM. Skewed differentiation of bone marrow CD34+ cells of tumor bearers from dendritic toward monocytic cells, and the redirection of differentiation toward dendritic cells by 1alpha,25-dihydroxyvitamin D3. Int J Immunopharmacol. 1999;21(10):675–88.

    PubMed  CAS  Google Scholar 

  235. Walsh JE, Clark AM, Day TA, Gillespie MB, Young MR. Use of alpha,25-dihydroxyvitamin D3 treatment to stimulate immune infiltration into head and neck squamous cell carcinoma. Hum Immunol. 2010;71(7):659–65. doi:10.1016/j.humimm.2010.04.008.

    PubMed  CAS  Google Scholar 

  236. Walker DD, Reeves TD, de Costa AM, Schuyler C, Young MR. Immunological modulation by 1alpha,25-dihydroxyvitamin D3 in patients with squamous cell carcinoma of the head and neck. Cytokine. 2012;58(3):448–54. doi:10.1016/j.cyto.2012.03.002.

    PubMed  CAS  Google Scholar 

  237. Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y, Mabjeesh NJ. 1alpha,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther. 2007;6(4):1433–9. doi:10.1158/1535-7163.MCT-06-0677.

    PubMed  CAS  Google Scholar 

  238. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13(2 Pt 2):721s–6. doi:13/2/721s [pii]10.1158/1078-0432.CCR-06-2197.

    PubMed  CAS  Google Scholar 

  239. Wirth LJ, Haddad RI, Lindeman NI, Zhao X, Lee JC, Joshi VA, et al. Phase I study of gefitinib plus celecoxib in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23(28):6976–81. doi:10.1200/JCO.2005.02.4182.

    PubMed  CAS  Google Scholar 

  240. Kao J, Genden EM, Chen CT, Rivera M, Tong CC, Misiukiewicz K, et al. Phase 1 trial of concurrent erlotinib, celecoxib, and reirradiation for recurrent head and neck cancer. Cancer. 2011;117(14):3173–81. doi:10.1002/cncr.25786.

    PubMed  CAS  Google Scholar 

  241. Dajani EZ, Islam K. Cardiovascular and gastrointestinal toxicity of selective cyclo-oxygenase-2 inhibitors in man. J Physiol Pharmacol. 2008;59 Suppl 2:117–33.

    PubMed  Google Scholar 

  242. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005;352(11):1071–80. doi:10.1056/NEJMoa050405.

    PubMed  CAS  Google Scholar 

  243. Huang WF, Hsiao FY, Wen YW, Tsai YW. Cardiovascular events associated with the use of four nonselective NSAIDs (etodolac, nabumetone, ibuprofen, or naproxen) versus a cyclooxygenase-2 inhibitor (celecoxib): a population-based analysis in Taiwanese adults. Clin Ther. 2006;28(11):1827–36. doi:10.1016/j.clinthera.2006.11.009.

    PubMed  CAS  Google Scholar 

  244. Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68(13):5439–49.

    PubMed  CAS  Google Scholar 

  245. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56(5):641–8. doi:10.1007/s00262-006-0225-8.

    PubMed  CAS  Google Scholar 

  246. Airoldi M, Cortesina G, Giordano C, Pedani F, Bumma C. Ifosfamide in the treatment of head and neck cancer. Oncology. 2003;65 Suppl 2:37–43.

    PubMed  CAS  Google Scholar 

  247. Recchia F, Lalli A, Lombardo M, De Filippis S, Saggio G, Fabbri F, et al. Ifosfamide, cisplatin, and 13-Cis retinoic acid for patients with advanced or recurrent squamous cell carcinoma of the head and neck: a phase I–II study. Cancer. 2001;92(4):814–21.

    PubMed  CAS  Google Scholar 

  248. Schroeder M, Zouboulis CC. All-trans-retinoic acid and 13-cis-retinoic acid: pharmacokinetics and biological activity in different cell culture models of human keratinocytes. Horm Metab Res. 2007;39(2):136–40. doi:10.1055/s-2007-961813.

    PubMed  CAS  Google Scholar 

  249. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. doi:10.1038/nri2506.

    PubMed  CAS  Google Scholar 

  250. De Costa AM, Young MR. Immunotherapy for head and neck cancer: advances and deficiencies. Anticancer Drugs. 2011;22(7):674–81. doi:10.1097/CAD.0b013e328340fd18.

    PubMed  Google Scholar 

  251. Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol. 2010;28(28):4390–9. doi:10.1200/JCO.2009.27.6360.

    PubMed  CAS  Google Scholar 

  252. Russell JS, Colevas AD. The use of epidermal growth factor receptor monoclonal antibodies in squamous cell carcinoma of the head and neck. Chemother Res Pract. 2012;2012:761518. doi:10.1155/2012/761518.

    PubMed  Google Scholar 

  253. Young MR, Neville BW, Chi AC, Lathers DM, Boyd Gillespie M, Day TA. Oral premalignant lesions induce immune reactivity to both premalignant oral lesions and head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2007;56(7):1077–86. doi:10.1007/s00262-006-0242-7.

    PubMed  Google Scholar 

  254. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147–57. doi:nbt1137 [pii]10.1038/nbt1137.

    PubMed  CAS  Google Scholar 

  255. Baselga J, Pfister D, Cooper MR, Cohen R, Burtness B, Bos M, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol. 2000;18(4):904–14.

    PubMed  CAS  Google Scholar 

  256. Robert F, Ezekiel MP, Spencer SA, Meredith RF, Bonner JA, Khazaeli MB, et al. Phase I study of anti–epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol. 2001;19(13):3234–43.

    PubMed  CAS  Google Scholar 

  257. Shin DM, Donato NJ, Perez-Soler R, Shin HJ, Wu JY, Zhang P, et al. Epidermal growth factor receptor-targeted therapy with C225 and cisplatin in patients with head and neck cancer. Clin Cancer Res. 2001;7(5):1204–13.

    PubMed  CAS  Google Scholar 

  258. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78. doi:10.1056/NEJMoa053422.

    PubMed  CAS  Google Scholar 

  259. Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11(1):21–8. doi:10.1016/S1470-2045(09)70311-0.

    PubMed  CAS  Google Scholar 

  260. Pfister DG, Su YB, Kraus DH, Wolden SL, Lis E, Aliff TB, et al. Concurrent cetuximab, cisplatin, and concomitant boost radiotherapy for locoregionally advanced, squamous cell head and neck cancer: a pilot phase II study of a new combined-modality paradigm. J Clin Oncol. 2006;24(7):1072–8. doi:10.1200/JCO.2004.00.1792.

    PubMed  CAS  Google Scholar 

  261. Merlano M, Russi E, Benasso M, Corvo R, Colantonio I, Vigna-Taglianti R, et al. Cisplatin-based chemoradiation plus cetuximab in locally advanced head and neck cancer: a phase II clinical study. Ann Oncol. 2011;22(3):712–7. doi:10.1093/annonc/mdq412.

    PubMed  CAS  Google Scholar 

  262. Harari PM, Allen GW, Bonner JA. Biology of interactions: antiepidermal growth factor receptor agents. J Clin Oncol. 2007;25(26):4057–65. doi:10.1200/JCO.2007.11.8984.

    PubMed  CAS  Google Scholar 

  263. Harari PM, Huang S. Radiation combined with EGFR signal inhibitors: head and neck cancer focus. Semin Radiat Oncol. 2006;16(1):38–44. doi:10.1016/j.semradonc.2005.08.005.

    PubMed  Google Scholar 

  264. Kim S, Grandis JR, Rinaldo A, Takes RP, Ferlito A. Emerging perspectives in epidermal growth factor receptor targeting in head and neck cancer. Head Neck. 2008;30(5):667–74. doi:10.1002/hed.20859.

    PubMed  Google Scholar 

  265. Lopez-Albaitero A, Ferris RL. Immune activation by epidermal growth factor receptor specific monoclonal antibody therapy for head and neck cancer. Arch Otolaryngol Head Neck Surg. 2007;133(12):1277–81. doi:10.1001/archotol.133.12.1277.

    PubMed  Google Scholar 

  266. Andrade P, Deleo A, Visus C, Butterfield L, Argiris A, Ferris RL. Phase I adjuvant trial of multi-epitope p53 vaccine for patients with squamous cell carcinoma of the head and neck. J Clin Oncol. 2009;27:15s.

    Google Scholar 

  267. Lopez-Albaitero A, Lee SC, Morgan S, Grandis JR, Gooding WE, Ferrone S, et al. Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells. Cancer Immunol Immunother. 2009;58(11):1853–64. doi:10.1007/s00262-009-0697-4.

    PubMed  CAS  Google Scholar 

  268. Kurai J, Chikumi H, Hashimoto K, Yamaguchi K, Yamasaki A, Sako T, et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res. 2007;13(5):1552–61. doi:10.1158/1078-0432.CCR-06-1726.

    PubMed  CAS  Google Scholar 

  269. Andrade Filho PA, Lopez-Albaitero A, Gooding W, Ferris RL. Novel immunogenic HLA-A*0201-restricted epidermal growth factor receptor-specific T-cell epitope in head and neck cancer patients. J Immunother. 2010;33(1):83–91. doi:10.1097/CJI.0b013e3181b8f421.

    PubMed  CAS  Google Scholar 

  270. Dechant M, Weisner W, Berger S, Peipp M, Beyer T, Schneider-Merck T, et al. Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Res. 2008;68(13):4998–5003. doi:10.1158/0008-5472.CAN-07-6226.

    PubMed  CAS  Google Scholar 

  271. Riechelmann H, Wiesneth M, Schauwecker P, Reinhardt P, Gronau S, Schmitt A, et al. Adoptive therapy of head and neck squamous cell carcinoma with antibody coated immune cells: a pilot clinical trial. Cancer Immunol Immunother. 2007;56(9):1397–406. doi:10.1007/s00262-007-0283-6.

    PubMed  CAS  Google Scholar 

  272. Junker N, Andersen MH, Wenandy L, Dombernowsky SL, Kiss K, Sorensen CH, et al. Bimodal ex vivo expansion of T cells from patients with head and neck squamous cell carcinoma: a prerequisite for adoptive cell transfer. Cytotherapy. 2011;13(7):822–34. doi:10.3109/14653249.2011.563291.

    PubMed  CAS  Google Scholar 

  273. Dudley ME, Rosenberg SA. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer. 2003;3(9):666–75. doi:10.1038/nrc1167.

    PubMed  CAS  Google Scholar 

  274. Cohen CJ, Zheng Z, Bray R, Zhao Y, Sherman LA, Rosenberg SA, et al. Recognition of fresh human tumor by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. J Immunol. 2005;175(9):5799–808.

    PubMed  CAS  Google Scholar 

  275. Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, et al. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol. 2011;138(3):255–65. doi:10.1016/j.clim.2010.11.014.

    PubMed  CAS  Google Scholar 

  276. Lee KD, Lee HH, Joo HB, Lee HS, Yu TH, Chang HK, et al. Expression of MAGE A 1–6 mRNA in sputa of head and neck cancer patients–a preliminary report. Anticancer Res. 2006;26(2B):1513–8.

    PubMed  CAS  Google Scholar 

  277. Lee KD, Chang HK, Jo YK, Kim BS, Lee BH, Lee YW, et al. Expression of the MAGE 3 gene product in squamous cell carcinomas of the head and neck. Anticancer Res. 1999;19(6B):5037–42.

    PubMed  CAS  Google Scholar 

  278. Lee KD, Eura M, Ogi K, Nakano K, Chikamatsu K, Masuyama K, et al. Expression of the MAGE-1, -2, -3, -4, and −6 genes in non-squamous cell carcinoma lesions of the head and neck. Acta Otolaryngol. 1996;116(4):633–9.

    PubMed  CAS  Google Scholar 

  279. Clark CE, Vonderheide RH. Cancer-testis antigens in tumor biology and immunotherapy. Cancer Biol Ther. 2006;5(9):1226–7.

    PubMed  CAS  Google Scholar 

  280. Ma B, Yijie X, Hung C-F, Wu T-C (2010) HPV and therapeutic vaccines: where we stand in 2010. Curr Cancer Ther Rev 6:81–103

    Google Scholar 

  281. Hoffmann TK, Bier H, Donnenberg AD, Whiteside TL, De Leo AB. p53 as an immunotherapeutic target in head and neck cancer. Adv Otorhinolaryngol. 2005;62:151–60. doi:10.1159/000082505.

    PubMed  CAS  Google Scholar 

  282. Hoffmann TK, Loftus DJ, Nakano K, Maeurer MJ, Chikamatsu K, Appella E, et al. The ability of variant peptides to reverse the nonresponsiveness of T lymphocytes to the wild-type sequence p53(264–272) epitope. J Immunol. 2002;168(3):1338–47.

    PubMed  CAS  Google Scholar 

  283. Schuler PJH, Harasymczuk M, Visus C, Hoffmann TK, Lang S, Argiris A, DeLeo AB, Whiteside TL, Ferris RL (2012) Adjuvant P53 peptide loaded dendritic cell vaccination in patients with head and neck cancer – a phase I/II clinical trial 8th international conference on head and neck cancer. Metro Toronto Convention Centre, 21–25 July 2012. http://ahns.jnabstracts.com/Detail.aspx?ID=0252

  284. Marty R, Roze S, Bresse X, Largeron N, Smith-Palmer J. Estimating the clinical benefits of vaccinating boys and girls against HPV-related diseases in Europe. BMC Cancer. 2013;13(1):10. doi:10.1186/1471-2407-13-10.

    PubMed  Google Scholar 

  285. Wallecha A, French C, Petit R, Singh R, Amin A, Rothman J. Lm-LLO-based immunotherapies and HPV-associated disease. J Oncol. 2012;2012:542851. doi:10.1155/2012/542851.

    PubMed  Google Scholar 

  286. Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol. 2001;167(11):6471–9.

    PubMed  CAS  Google Scholar 

  287. Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009;27(30):3975–83. doi:10.1016/j.vaccine.2009.04.041.

    PubMed  CAS  Google Scholar 

  288. Voskens CJ, Sewell D, Hertzano R, DeSanto J, Rollins S, Lee M, et al. InducTION of mage-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma. Head Neck. 2012;34(12):1734–46. doi:10.1002/hed.22004.

    PubMed  Google Scholar 

  289. Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12(22):6737–47. doi:10.1158/1078-0432.CCR-06-0759.

    PubMed  CAS  Google Scholar 

  290. Harrington KJ, Hingorani M, Tanay MA, Hickey J, Bhide SA, Clarke PM, et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res. 2010;16(15):4005–15. doi:10.1158/1078-0432.CCR-10-0196.

    PubMed  CAS  Google Scholar 

  291. Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA, et al. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther. 2009;20(10):1119–32. doi:10.1089/hum.2009.135.

    PubMed  CAS  Google Scholar 

  292. Naik JD, Twelves CJ, Selby PJ, Vile RG, Chester JD. Immune recruitment and therapeutic synergy: keys to optimizing oncolytic viral therapy? Clin Cancer Res. 2011;17(13):4214–24. doi:10.1158/1078-0432.CCR-10-2848.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Serafini or Donald T. Weed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Serafini, P., Weed, D.T. (2014). The Immune System in Head and Neck Squamous Cell Carcinoma: Interactions and Therapeutic Opportunities. In: Rosenblatt, J., Podack, E., Barber, G., Ochoa, A. (eds) Advances in Tumor Immunology and Immunotherapy. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8809-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8809-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8808-8

  • Online ISBN: 978-1-4614-8809-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics