Skip to main content

Parallels in Neural and Human Communication Networks

  • Chapter
  • First Online:
Handbook of Human Computation
  • 3307 Accesses

Abstract

The model of the brain—particularly the human brain—as a computer is widespread in the modern age. In keeping with most analogies by which complex systems behavior has been understood, this model has provided some useful conceptualizations of brain processing while leaving unanswered the emergent property of the mind. This chapter will explore the similarities and differences in the potential power of both neural and human communication systems to solve complex problems by working with the framework of complex dynamic systems analysis. To this end, the chapter will explore the basic computational elements of each of these two diverse systems and the modes of communication available to each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens MB, Huang KH, Narayan S, Mensh BD, Engert F (2013) Two-photon calcium imaging during fictive navigation in virtual environments. Front Neural Circuit 7:104

    Google Scholar 

  • Amaral LA, Diaz-Guilera A, Moreira AA, Goldberger AL, Lipsitz LA (2004) Emergence of complex dynamics in a simple model of signaling networks. Proc Natl Acad Sci USA 101(44): 15551–15555

    Article  MathSciNet  MATH  Google Scholar 

  • Barabási A-L, Albert R, Jeong H (2000) Scale-free characteristics of random networks: the topology of the world-wide web. Phys A Stat Mech Appl 281(1):69–77

    Article  Google Scholar 

  • Barch DM, Braver TS, Sabb FW, Noll DC (2000) Anterior cingulate and the monitoring of response conflict: evidence from an fMRI study of overt verb generation. J Cogn Neurosci 12(2):298–309

    Article  Google Scholar 

  • Bassett DS, Bullmore E (2006) Small-world brain networks. The Neuroscientist 12(6):512–523

    Article  Google Scholar 

  • Bedard C, Kroeger H, Destexhe A (2006) Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys Rev Lett 97(11):118102

    Article  Google Scholar 

  • Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo planar MRI. Magn Reson Med 34(4):537–541

    Article  Google Scholar 

  • Brown J, Broderick AJ, Lee N (2007) Word of mouth communication within online communities: conceptualizing the online social network. J Interact Mark 21(3):2–20

    Article  Google Scholar 

  • Butts CT (2009) Revisiting the foundations of network analysis. Science 325(5939):414–416

    Article  MathSciNet  MATH  Google Scholar 

  • Chialvo DR (2010) Emergent complex neural dynamics. Nat Phys 6(10):744–750

    Article  Google Scholar 

  • Christakis NA, Fowler JH (2008) The collective dynamics of smoking in a large social network. N Engl J Med 358(21):2249–2258

    Article  Google Scholar 

  • Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van Essen DC, Schlaggar BL, Petersen SE (2008) Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41(1):45

    Article  Google Scholar 

  • Collin G, Sporns O, Mandl RC, van den Heuvel MP (2013) Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex, epub ahead of print, PMID 23551922, DOI: 10.1093/cercor/bht064

  • Davidsen J, Ebel H, Bornholdt S (2002) Emergence of a small world from local interactions: modeling acquaintance networks. Phys Rev Lett 88(12):128701

    Article  Google Scholar 

  • Deco G, Jirsa VK, McIntosh AR (2013) Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci 36(5):268–274

    Article  Google Scholar 

  • DeLong ND, Nusbaum MP (2010) Hormonal modulation of sensorimotor integration. The J Neurosci 30(7):2418–2427

    Article  Google Scholar 

  • Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci 104(26):11073–11078

    Article  Google Scholar 

  • Dupouët O, Yıldızoğlu M (2006) Organizational performance in hierarchies and communities of practice. J Econ Behav Organ 61(4):668–690

    Article  Google Scholar 

  • Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94(1):018102

    Article  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47

    Article  MATH  Google Scholar 

  • Fiete IR, Senn W, Wang CZ, Hahnloser RH (2010) Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron 65(4):563–576

    Article  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678

    Article  Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Agnati LF (2013) Volume transmission and its different forms in the central nervous system. Chin J Integr Med 19(5):323–329

    Article  Google Scholar 

  • Garmestani AS, Allen CR, Gunderson L (2009) Panarchy: discontinuities reveal similarities in the dynamic system structure of ecological and social systems. Pap Nat Res 166. Ecology and Society 14(1):15. [online] URL: http://www.ecologyandsociety.org/vol14/iss1/art15/

  • Grier DA (1998) The math tables project of the work projects administration: the reluctant start of the computing era. Ann Hist Comput, IEEE 20(3):33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Grier DA (2005) When computers were human. Princeton University Press, Princeton

    Google Scholar 

  • Guertin PA (2012) Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front Neurology 3:183

    Google Scholar 

  • Gulati R, Sytch M, Tatarynowicz A (2012) The rise and fall of small worlds: exploring the dynamics of social structure. Organ Sci 23(2):449–471

    Article  Google Scholar 

  • Haas JS, Landisman CE (2012) Bursts modify electrical synaptic strength. Brain Res

    Google Scholar 

  • He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419

    Article  Google Scholar 

  • Heylighen F (2013) From human computation to the global brain: the self-organization of distributed intelligence. In: Michelucci P (ed) The handbook of human computation. Springer, New York

    Google Scholar 

  • Holling CS (2001) Understanding the complexity of economic, ecological, and social systems. Ecosystems 4(5):390–405

    Article  MathSciNet  Google Scholar 

  • Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007) Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex 17(4):951–961

    Article  Google Scholar 

  • Kaneko T (2013) Local connections of excitatory neurons in motor-associated cortical areas of the rat. Front Neural Circuits 7:75

    Article  Google Scholar 

  • Kello CT, Brown GD, Ferrer-i-Cancho R, Holden JG, Linkenkaer-Hansen K, Rhodes T, Van Orden GC (2010) Scaling laws in cognitive sciences. Trends Cogn Sci 14(5):223–232

    Article  Google Scholar 

  • Kitzbichler MG, Smith ML, Christensen SR, Bullmore E (2009) Broadband criticality of human brain network synchronization. PLoS Comput Biol 5(3):e1000314

    Article  MathSciNet  Google Scholar 

  • Mennes M, Kelly C, Zuo X-N, Di Martino A, Biswal B, Castellanos FX, Milham MP (2010) Inter-individual differences in resting state functional connectivity predict task-induced BOLD activity. Neuroimage 50(4):1690

    Article  Google Scholar 

  • Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4

    Google Scholar 

  • Morone P, Taylor R (2004) Knowledge diffusion dynamics and network properties of face-to-face interactions. J Evol Econ 14(3):327–351

    Article  Google Scholar 

  • Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev 47(1):191–215

    Article  Google Scholar 

  • Oláh S, Füle M, Komlósi G, Varga C, Báldi R, Barzó P, Tamás G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461(7268): 1278–1281

    Article  Google Scholar 

  • Opsahl T, Colizza V, Panzarasa P, Ramasco JJ (2008) Prominence and control: the weighted rich-club effect. Phys Rev Lett 101(16):168702

    Article  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200–3203

    Article  Google Scholar 

  • Poil SS, van Ooyen A, Linkenkaer‐Hansen K (2008) Avalanche dynamics of human brain oscillations: relation to critical branching processes and temporal correlations. Hum Brain Mapp 29(7):770–777

    Article  Google Scholar 

  • Rall DN (2006) The ‘house that Dick built’: constructing the team that built the bomb. Soc Stud Sci 36(6):943–957

    Article  MathSciNet  Google Scholar 

  • Rubinov M, Sporns O, Thivierge J-P, Breakspear M (2011) Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Comput Biol 7(6):e1002038

    Article  MathSciNet  Google Scholar 

  • Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell—cell communication. Neuron Glia Biol 3(3):199

    Article  Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42

    Article  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221

    Article  MathSciNet  Google Scholar 

  • Steyvers M, Tenenbaum JB (2005) The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cogn Sci 29(1):41–78

    Article  Google Scholar 

  • Szell M, Lambiotte R, Thurner S (2010) Multirelational organization of large-scale social networks in an online world. Proc Natl Acad Sci 107(31):13636–13641

    Article  Google Scholar 

  • Theis M, Giaume C (2012) Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res

    Google Scholar 

  • van den Heuvel MP, Kahn RS, Goñi J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci 109(28):11372–11377

    Article  Google Scholar 

  • Vaquero LM, Cebrian M (2013) The rich club phenomenon in the classroom. Sci Rep 3:1174

    Article  Google Scholar 

  • Vizi E, Fekete A, Karoly R, Mike A (2010) Non‐synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 160(4):785–809

    Article  Google Scholar 

  • Wang XF, Chen G (2003) Complex networks: small-world, scale-free and beyond. Circuits Syst Mag IEEE 3(1):6–20

    Article  Google Scholar 

  • Watts DJ (2004) Six degrees: the science of a connected age. WW Norton, New York

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684): 440–442

    Article  Google Scholar 

  • Wilkinson D (2002) Civilizations as networks: trade, war, diplomacy, and command-control. Complexity 8(1):82–86

    Article  Google Scholar 

  • Woolley AW, Hashmi N (2013) Cultivating collective intelligence in online groups. In: Michelucci P (ed) The handbook of human computation. Springer, New York

    Google Scholar 

  • Zempel JM, Politte DG, Kelsey M, Verner R, Nolan TS, Babajani-Feremi A, Prior F, Larson-Prior LJ (2012) Characterization of scale-free properties of human electrocorticography in awake and slow wave sleep states. Front Neurol 3:76

    Article  Google Scholar 

  • Zhang J, Xu X-K, Li P, Zhang K, Small M (2011) Node importance for dynamical process on networks: a multiscale characterization. Chaos An Interdiscip J Nonlinear Sci 21(1): 016106–016107

    Article  Google Scholar 

  • Zhou C, Zemanová L, Zamora G, Hilgetag CC, Kurths J (2006) Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett 97(23):238103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Larson-Prior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larson-Prior, L.J. (2013). Parallels in Neural and Human Communication Networks. In: Michelucci, P. (eds) Handbook of Human Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8806-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8806-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8805-7

  • Online ISBN: 978-1-4614-8806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics