Skip to main content

Neurological Imaging

  • Chapter
  • First Online:
Clinician's Guide to Diagnostic Imaging
  • 2324 Accesses

Abstract

The early 1900s marked the beginning of a new field in imaging, neuroradiology. Skull radiographs became available to the medical community in the first decade of the twentieth century. Ventriculography and pneumoencephalography soon followed 2 decades later. In the ensuing years, intra-arterial catheter-based vascular imaging heralded carotid angiography. Over the ensuing 40 years, many technical advances were made with angiographic imaging; however, patients did not tolerate these well-tolerated semi-invasive procedures and suffered significant morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A. Radiation exposure from CT scans in childhood and subsequent risk of leukeamia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.

    Google Scholar 

  2. Bille BS. Migraine in school children. A study of the incidence and short-term prognosis, and a clinical, psychological and electroencephalographic comparison between children with migraine and matched controls. Acta Paediatr. 1962;51 Suppl 136:1–151.

    Google Scholar 

  3. Sillanpaa M. Headache in children. In: Olessen J, editor. Headache classification and epidemiology. New York, NY: Raven; 1994. p. 273–81.

    Google Scholar 

  4. Schwedt TJ, Guo Y, Rothner AD. “Benign” imaging abnormalities in children and adolescents with headache. Headache. 2006;46(3):387–98.

    PubMed  Google Scholar 

  5. Sempere AP, Porta-Etessam J, Medrano V, et al. Neuroimaging in the evaluation of patients with non-acute headache. Cephalalgia. 2005;25(1):30–5.

    PubMed  CAS  Google Scholar 

  6. The Childhood Brain Tumor Consortium. The epidemiology of headache among children with brain tumor. Headache in children with brain tumors. J Neurooncol. 1991;10(1):31–46.

    Google Scholar 

  7. Landtblom AM, Fridriksson S, Boivie J, Hillman J, Johansson G, Johansson I. Sudden onset headache: a prospective study of features, incidence and causes. Cephalalgia. 2002;22(5):354–60.

    PubMed  Google Scholar 

  8. Barlow CF. Headaches and migraine in childhood. Clinics in developmental medicine. No. 91. Philadelphia, PA: JB Lippincott; 1984:204–19.

    Google Scholar 

  9. Medina LS, Pinter JD, Zurakowski D, Davis RG, Kuban K, Barnes PD. Children with headache: clinical predictors of surgical space-occupying lesions and the role of neuroimaging. Radiology. 1997;202(3):819–24.

    PubMed  CAS  Google Scholar 

  10. Weingarten K, Zimmerman RD, Becker RD, Heier LA, Haimes AB, Deck MD. Subdural and epidural empyemas: MR imaging. AJR Am J Roentgenol. 1989;152(3):615–21.

    PubMed  CAS  Google Scholar 

  11. Reinus WR, Wippold FJ, Erickson K. Practical selection criteria for unenhanced cranial CT in patients with acute headache. Emerg Radiol. 1994;1:81–4.

    Google Scholar 

  12. Reinus WR, Zwemer Jr FL. Clinical prediction of emergent cranial CT results. Ann Emerg Med. 1994;23:1271–8.

    PubMed  CAS  Google Scholar 

  13. Reinus WR, Zwemer Jr FL, Wippold FJ, Erickson KK. Emergency imaging of patients with resolved neurologic deficits: value of immediate cranial CT. AJR Am J Roentgenol. 1994;163:667–70.

    PubMed  CAS  Google Scholar 

  14. Aygun D, Bildik F. Clinical warning criteria in evaluation by computed tomography the secondary neurological headaches in adults. Eur J Neurol. 2003;10:437–42.

    PubMed  CAS  Google Scholar 

  15. Sobri M, Lamont AC, Alias NA, Win MN. Red flags in patients presenting with headache: clinical indications for neuroimaging. Br J Radiol. 2003;76:532–5.

    Google Scholar 

  16. Ramier-Lassepas M, Espinosa C, Cicero JJ, Johnston KL, Clipolle RJ, Barber DL. Predictors of intracranial pathologic findings in patients who see emergency care because of headaches. Arch Neurol. 1997;54:1506–9.

    Google Scholar 

  17. Becker L, Iverson DC, Reed FM, Calonge N, Miller RS, Freeman WL. Patients with a new headache in primary care: a report from ASPN. J Fam Pract. 1988;27:41–7.

    PubMed  CAS  Google Scholar 

  18. Becker LA, Green LA, Beaufait D, Kirk J, Froom J, Freeman WL. Use of CT scans for the investigation of headache: a report from ASPN, part 1. J Fam Pract. 1993;37:129–34.

    PubMed  CAS  Google Scholar 

  19. Morey SS. Headache Consortium releases guidelines for use of CT or MRI in migraine work-up. Am Fam Physician. 2000;62:1699–701.

    PubMed  CAS  Google Scholar 

  20. Mettler Jr FA. Essentials of radiology. 2nd ed. Philadelphia, PA: Saunders; 2005.

    Google Scholar 

  21. Marx JA, Hockberger RS, Walls JM. Rosen’s emergency medicine: concepts and clinical practice. 5th ed. St. Louis, MO: Mosby; 2002.

    Google Scholar 

  22. So EL. Classifications and epidemiologic considerations of epileptic seizures and epilepsy. Neuroimaging Clin N Am. 1995;5(4):513–26.

    PubMed  CAS  Google Scholar 

  23. Wieshmann UC. Clinical application of neuroimaging in epilepsy. J Neurol Neurosurg Psychiatry. 2003;74(4):466–70.

    PubMed  CAS  Google Scholar 

  24. Adams C, Hwang PA, Gilday DL, Armstrong DC, Becker LE, Hoffman HJ. Comparison of SPECT, EEG, CT, MRI, and pathology in partial epilepsy. Pediatr Neurol. 1992;8(2):97–103.

    PubMed  CAS  Google Scholar 

  25. SPECT and PET in epilepsy. Lancet 1989;1(8630):135–7.

    Google Scholar 

  26. Bergen D, Bleck T, Ramsey R, et al. Magnetic resonance imaging as a sensitive and specific predictor of neoplasms removed for intractable epilepsy. Epilepsia. 1989;30(3):318–21.

    PubMed  CAS  Google Scholar 

  27. Brooks BS, King DW, el Gammal T, et al. MR imaging in patients with intractable complex partial epileptic seizures. AJNR Am J Neuroradiol. 1990;11(1):93–9.

    PubMed  CAS  Google Scholar 

  28. Heinz ER, Heinz TR, Radtke R, et al. Efficacy of MR vs CT in epilepsy. AJR Am J Roentgenol. 1989;152(2):347–52.

    PubMed  CAS  Google Scholar 

  29. Maxwell RE, Gates JR, McGeachie R. Magnetic resonance imaging in the assessment and surgical management of epilepsy and functional neurological disorders. Appl Neurophysiol. 1987;50(1–6):369–73.

    PubMed  CAS  Google Scholar 

  30. Toh KH. Clinical applications of magnetic resonance imaging in the central nervous system. Ann Acad Med Singapore. 1993;22(5):785–93.

    PubMed  CAS  Google Scholar 

  31. Cascino GD, Jack Jr CR, Parisi JE, et al. MRI in the presurgical evaluation of patients with frontal lobe epilepsy and children with temporal lobe epilepsy: pathologic correlation and prognostic importance. Epilepsy Res. 1992;11(1):51–9.

    PubMed  CAS  Google Scholar 

  32. Jackson GD. New techniques in magnetic resonance and epilepsy. Epilepsia. 1994;35 Suppl 6:S2–13.

    PubMed  Google Scholar 

  33. Spencer SS. The relative contributions of MRI, SPECT, and PET imaging in epilepsy. Epilepsia. 1994;35 Suppl 6:S72–89.

    PubMed  Google Scholar 

  34. Schwartz ES, Dlugos DJ, Storm PB, et al. Magnetoencephalography for pediatric epilepsy: how we do it. AJNR Am J Neuroradiol. 2008;29(5):832–7.

    PubMed  CAS  Google Scholar 

  35. Lau M, Yam D, Burneo JG. A systematic review on MEG and its use in the presurgical evaluation of localization-related epilepsy. Epilepsy Res. 2008;79(2–3):97–104.

    PubMed  CAS  Google Scholar 

  36. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 2010;333:1581–7.

    Google Scholar 

  37. Furlan A, Higashida R, Wechsler L, et al. Intra-arterial prourokinase for acute ischemic stroke: The PROACT II study—a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA. 1999;282:2003–11.

    PubMed  CAS  Google Scholar 

  38. Kidwell CS, Warach S. Acute ischemic cerebrovascular syndrome: diagnostic criteria. Stroke. 2003;34:2995–8.

    PubMed  Google Scholar 

  39. Easton JD, Saver JL, Albers GW, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. Stroke. 2009;40:2276–93.

    PubMed  Google Scholar 

  40. Restrepo L, Jacobs MA, Barker PB, Wityk RJ. Assessment of transient ischemic attack with diffusion- and perfusion-weighted imaging. AJNR Am J Neuroradiol. 2004;25:1645–52.

    PubMed  Google Scholar 

  41. Albers GW. Acute cerebrovascular syndrome: time for new terminology for acute brain ischemia. Nat Clin Pract Cardiovasc Med. 2006;3:521.

    PubMed  Google Scholar 

  42. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–6.

    PubMed  Google Scholar 

  43. Rothwell PM, Johnston SC. Transient ischemic attacks: stratifying risk. Stroke. 2006;37(2):320–2.

    PubMed  Google Scholar 

  44. Wintermark M, Meuli R, Browaeys P, et al. Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology. 2007;68(9):694–7.

    PubMed  CAS  Google Scholar 

  45. Siebert E, Bohner G, Dewey M, et al. 320-slice CT neuroimaging: initial clinical experience and image quality evaluation. Br J Radiol. 2009;82(979):561–70.

    PubMed  CAS  Google Scholar 

  46. Goldstein LB, Adams R, Alberts MJ, et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2006;113(24):e873–923.

    PubMed  Google Scholar 

  47. Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA 1995;273(18):1421–8.

    Google Scholar 

  48. Barnett HJ, Taylor DW, Eliasziw M, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1998;339(20):1415–25.

    PubMed  CAS  Google Scholar 

  49. Hobson 2nd RW, Weiss DG, Fields WS, et al. Efficacy of carotid endarterectomy for asymptomatic carotid stenosis. The Veterans Affairs Cooperative Study Group. N Engl J Med. 1993;328(4):221–7.

    PubMed  Google Scholar 

  50. Rothwell PM, Eliasziw M, Gutnikov SA, et al. Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet. 2003;361(9352):107–16.

    PubMed  CAS  Google Scholar 

  51. Brott TG, Hobson 2nd RW, Howard G, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010;363(1):11–23.

    PubMed  CAS  Google Scholar 

  52. Halliday A, Harrison M, Hayter E, et al. 10-year stroke prevention after successful carotid endarterectomy for asymptomatic stenosi (ACST-1): a multicentre randomised trial. Lancet. 2010;376(9746):1074–84.

    PubMed  Google Scholar 

  53. Derdeyn CP, Powers WJ. Cost-effectiveness of screening for asymptomatic carotid atherosclerotic disease. Stroke. 1996;27(11):1944–50.

    PubMed  CAS  Google Scholar 

  54. Obuchowski NA, Modic MT, Magdinec M, Masaryk TJ. Assessment of the efficacy of noninvasive screening for patients with asymptomatic neck bruits. Stroke. 1997;28(7):1330–9.

    PubMed  CAS  Google Scholar 

  55. Mathiesen EB, Joakimsen O, Bonaa KH. Intersonographer reproducibility and intermethod variability of ultrasound measurements of carotid artery stenosis: The Tromso Study. Cerebrovasc Dis. 2000;10(3):207–13.

    PubMed  CAS  Google Scholar 

  56. Wardlaw JM, Chappell FM, Best JJ, Wartolowska K, Berry E. Non-invasive imaging compared with intra-arterial angiography in the diagnosis of symptomatic carotid stenosis: a meta-analysis. Lancet. 2006;367(9521):1503–12.

    PubMed  CAS  Google Scholar 

  57. Honish C, Sadanand V, Fladeland D, Chow V, Pirouzmand F. The reliability of ultrasound measurements of carotid stenosis compared to MRA and DSA. Can J Neurol Sci. 2005;2(4):465–71.

    Google Scholar 

  58. Barth A, Arnold M, Mattle HP, Schroth G, Remonda L. Contrastenhanced 3-D MRA in decision making for carotid endarterectomy: a 6-year experience. Cerebrovasc Dis. 2006;21(5–6):393–400.

    PubMed  Google Scholar 

  59. U-King-Im JM, Hollingworth W, Trivedi RA, et al. Costeffectiveness of diagnostic strategies prior to carotid endarterectomy. Ann Neurol. 2005;58(4):506–15.

    PubMed  Google Scholar 

  60. Bartlett ES, Walters TD, Symons SP, Fox AJ. Quantification of carotid stenosis on CT angiography. AJNR Am J Neuroradiol. 2006;27(1):13–9.

    PubMed  CAS  Google Scholar 

  61. Koelemay MJ, Nederkoorn PJ, Reitsma JB, Majoie CB. Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke. 2004;35(10):2306–12.

    PubMed  Google Scholar 

  62. U-King-Im JM, Tang TY, Patterson A, et al. Characterisation of carotid atheroma in symptomatic and asymptomatic patients using high resolution MRI. J Neurol Neurosurg Psychiatry. 2008;79(8):905–12.

    PubMed  CAS  Google Scholar 

  63. Wintermark M, Jawadi SS, Rapp JH, et al. High-resolution CT imaging of carotid artery atherosclerotic plaques. AJNR Am J Neuroradiol. 2008;29(5):875–82.

    PubMed  CAS  Google Scholar 

  64. Derdeyn CP, Videen TO, Yundt KD, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain. 2002;125(Pt 3):595–607.

    PubMed  Google Scholar 

  65. Kuroda S, Shiga T, Houkin K, et al. Cerebral oxygen metabolism and neuronal integrity in patients with impaired vasoreactivity attributable to occlusive carotid artery disease. Stroke. 2006;37(2):393–8.

    PubMed  CAS  Google Scholar 

  66. Nemoto EM, Yonas H, Kuwabara H, et al. Identification of hemodynamic compromise by cerebrovascular reserve and oxygen extraction fraction in occlusive vascular disease. J Cereb Blood Flow Metab. 2004;24(10):1081–9.

    PubMed  Google Scholar 

  67. Endo H, Inoue T, Ogasawara K, Fukuda T, Kanbara Y, Ogawa A. Quantitative assessment of cerebral hemodynamics using perfusion-weighted MRI in patients with major cerebral artery occlusive disease: comparison with positron emission tomography. Stroke. 2006;37(2):388–92.

    PubMed  Google Scholar 

  68. Furukawa M, Kashiwagi S, Matsunaga N, Suzuki M, Kishimoto K, Shirao S. Evaluation of cerebral perfusion parameters measured by perfusion CT in chronic cerebral ischemia: comparison with xenon CT. J Comput Assist Tomogr. 2002;26(2):272–8.

    PubMed  Google Scholar 

  69. Adams H, Adams R, Del Zoppo G, Goldstein LB. Guidelines for the early management of patients with ischemic stroke: 2005 guidelines update a scientific statement from the Stroke Council of the American Heart Association/American Stroke Association. Stroke. 2005;36(4):916–23.

    PubMed  Google Scholar 

  70. Hacke W, Donnan G, Fieschi C, et al. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 2004;363(9411):768–74.

    PubMed  Google Scholar 

  71. Katzan IL, Hammer MD, Furlan AJ, Hixson ED, Nadzam DM. Quality improvement and tissue-type plasminogen activator for acute ischemic stroke: a Cleveland update. Stroke. 2003;34(3):799–800.

    PubMed  CAS  Google Scholar 

  72. Reeves MJ, Arora S, Broderick JP, et al. Acute stroke care in the US: results from 4 pilot prototypes of the Paul Coverdell National Acute Stroke Registry. Stroke. 2005;36(6):1232–72.

    PubMed  Google Scholar 

  73. Khatri P, Hill MD, Palesch YY, et al. Methodology of the Interventional Management of Stroke III Trial. Int J Stroke. 2008;3(2):130–7.

    PubMed  Google Scholar 

  74. Mattle HP, Arnold M, Georgiadis D, et al. Comparison of intraarterial and intravenous thrombolysis for ischemic stroke with hyperdense middle cerebral artery sign. Stroke. 2008;39(2):379–83.

    PubMed  Google Scholar 

  75. Smith WS, Sung G, Saver J, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke. 2008;39(4):1205–12.

    PubMed  Google Scholar 

  76. De Keyser J, Gdovinova Z, Uyttenboogaart M, Vroomen PC, Luijckx GJ. Intravenous alteplase for stroke: beyond the guidelines and in particular clinical situations. Stroke. 2007;38(9):2612–8.

    PubMed  Google Scholar 

  77. Fiehler J, Albers GW, Boulanger JM, et al. Bleeding risk analysis in stroke imaging before thrombolysis (BRASIL): pooled analysis of T2*-weighted magnetic resonance imaging data from 570 patients. Stroke. 2007;38(10):2738–44.

    PubMed  Google Scholar 

  78. Kohrmann M, Schellinger PD. Acute stroke triage to intravenous thrombolysis and other therapies with advanced CT or MR imaging: pro MR imaging. Radiology. 2009;251(3):627–33.

    PubMed  Google Scholar 

  79. Adams Jr HP, del Zoppo G, Alberts MJ, et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007;38(5):1655–711.

    PubMed  Google Scholar 

  80. Wardlaw JM, Mielke O. Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic treatment—systematic review. Radiology. 2005;235(2):444–53.

    PubMed  Google Scholar 

  81. Wintermark M, Rowley HA, Lev MH. Acute stroke triage to intravenous thrombolysis and other therapies with advanced CT or MR imaging: pro CT. Radiology. 2009;251(3):619–26.

    PubMed  Google Scholar 

  82. Al-Okaili RN, Krejza J, Wang S, Woo JH, Melhem ER. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics. 2006;26:S173–89.

    PubMed  Google Scholar 

  83. Cross 3rd DT, Tirschwell DL, Clark MA, et al. Mortality rates after subarachnoid hemorrhage: variations according to hospital case volume in 18 states. J Neurosurg. 2003;99(5):810–7.

    PubMed  Google Scholar 

  84. Flaherty ML, Haverbusch M, Sekar P, et al. Long-term mortality after intracerebral hemorrhage. Neurology. 2006;66(8):1182–6.

    PubMed  CAS  Google Scholar 

  85. Black PM. Hydrocephalus and vasospasm after subarachnoid hemorrhage from ruptured intracranial aneurysms. Neurosurgery. 1986;18(1):12–6.

    PubMed  CAS  Google Scholar 

  86. Kassell NF, Boarini DJ, Adams Jr HP, et al. Overall management of ruptured aneurysm: comparison of early and late operation. Neurosurgery. 1981;9(2):120–8.

    PubMed  CAS  Google Scholar 

  87. Bederson JB, Connolly Jr ES, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council. American Heart Association. Stroke. 2009;40(3):994–1025.

    PubMed  Google Scholar 

  88. Dammert S, Krings T, Moller-Hartmann W, et al. Detection of intracranial aneurysms with multislice CT: comparison with conventional angiography. Neuroradiology. 2004;46(6):427–34.

    PubMed  CAS  Google Scholar 

  89. Jayaraman MV, Mayo-Smith WW, Tung GA, et al. Detection of intracranial aneurysms: multi-detector row CT angiography compared with DSA. Radiology. 2004;230(2):510–8.

    PubMed  Google Scholar 

  90. Li Q, Lv F, Li Y, Luo T, Li K, Xie P. Evaluation of 64-section CT angiography for detection and treatment planning of intracranial aneurysms by using DSA and surgical findings. Radiology. 2009;252(3):808–15.

    PubMed  Google Scholar 

  91. Dehdashti AR, Rufenacht DA, Delavelle J, Reverdin A, de Tribolet N. Therapeutic decision and management of aneurismal subarachnoid haemorrhage based on computed tomographic angiography. Br J Neurosurg. 2003;17(1):46–53.

    PubMed  CAS  Google Scholar 

  92. Hoh BL, Cheung AC, Rabinov JD, Pryor JC, Carter BS, Ogilvy CS. Results of a prospective protocol of computed tomographic angiography in place of catheter angiography as the only diagnostic and pretreatment planning study for cerebral aneurysms by a combined neurovascular team. Neurosurgery. 2004;54(6):1329–40; discussion 1340–1322.

    PubMed  Google Scholar 

  93. Aaslid R, Huber P, Nornes H. Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg. 1984;60(1):37–41.

    PubMed  CAS  Google Scholar 

  94. Kimura T, Shinoda J, Funakoshi T. Prediction of cerebral infarction due to vasospasm following aneurysmal subarachnoid haemorrhage using acetazolamide-activated 123I-IMP SPECT. Acta Neurochir (Wien). 1993;123(3–4):125–8.

    CAS  Google Scholar 

  95. Kistler JP, Crowell RM, Davis KR, et al. The relation of cerebral vasospasm to the extent and location of subarachnoid blood visualized by CT scan: a prospective study. Neurology. 1983;33(4):424–36.

    PubMed  CAS  Google Scholar 

  96. Lewis DH, Eskridge JM, Newell DW, et al. Brain SPECT and the effect of cerebral angioplasty in delayed ischemia due to vasospasm. J Nucl Med. 1992;33(10):1789–96.

    PubMed  CAS  Google Scholar 

  97. Sviri GE, Mesiwala AH, Lewis DH, et al. Dynamic perfusion computerized tomography in cerebral vasospasm following aneurysmal subarachnoid hemorrhage: a comparison with technetium-99 m-labeled ethyl cysteinate dimer-single-photon emission computerized tomography. J Neurosurg. 2006;104(3):404–10.

    PubMed  Google Scholar 

  98. Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP. Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol. 2006;27(1):26–34.

    PubMed  CAS  Google Scholar 

  99. Pouratian N, Oskouian Jr RJ, Jensen ME, Kassell NF, Dumont AS. Endovascular management of unruptured intracranial aneurysms. J Neurol Neurosurg Psychiatry. 2006;77(5):572–8.

    PubMed  CAS  Google Scholar 

  100. Wiebers DO, Whisnant JP, Huston 3rd J, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–10.

    PubMed  Google Scholar 

  101. Molyneux AJ, Kerr RS, Yu LM, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005;366(9488):809–17.

    PubMed  Google Scholar 

  102. Ruggieri PM, Poulos N, Masaryk TJ, et al. Occult intracranial aneurysms in polycystic kidney disease: screening with MR angiography. Radiology. 1994;191(1):33–9.

    PubMed  CAS  Google Scholar 

  103. Ronkainen A, Puranen MI, Hernesniemi JA, et al. Intracranial aneurysms: MR angiographic screening in 400 asymptomatic individuals with increased familial risk. Radiology. 1995;195(1):35–40.

    PubMed  CAS  Google Scholar 

  104. Marks MP, Lane B, Steinberg GK, Chang PJ. Hemorrhage in intracerebral arteriovenous malformations: angiographic determinants. Radiology. 1990;176(3):807–13.

    PubMed  CAS  Google Scholar 

  105. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476–83.

    PubMed  CAS  Google Scholar 

  106. Cronqvist M, Wirestam R, Ramgren B, et al. Endovascular treatment of intracerebral arteriovenous malformations: procedural safety, complications, and results evaluated by MR imaging, including diffusion and perfusion imaging. AJNR Am J Neuroradiol. 2006;27(1):162–76.

    PubMed  CAS  Google Scholar 

  107. Gupta V, Chugh M, Walia BS, Vaishya S, Jha AN. Use of CT angiography for anatomic localization of arteriovenous malformation Nidal components. AJNR Am J Neuroradiol. 2008;29(10):1837–40.

    PubMed  CAS  Google Scholar 

  108. Lanzino G, Fraser K, Kanaan Y, Wagenbach A. Treatment of ruptured intracranial aneurysms since the International Subarachnoid Aneurysm Trial: practice utilizing clip ligation and coil embolization as individual or complementary therapies. J Neurosurg. 2006;104(3):344–9.

    PubMed  Google Scholar 

  109. Molyneux AJ, Kerr RS, Yu LM, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005;36(9488):809–17.

    Google Scholar 

  110. Schaafsma JD, Koffijberg H, Buskens E, Velthuis BK, van der Graaf Y, Rinkel GJ. Cost-effectiveness of magnetic resonance angiography versus intra-arterial digital subtraction angiography to follow-up patients with coiled intracranial aneurysms. Stroke. 2010;41(8):1736–42.

    PubMed  Google Scholar 

  111. Sprengers ME, Schaafsma JD, van Rooij WJ, et al. Evaluation of the occlusion status of coiled intracranial aneurysms with MR angiography at 3 T: is contrast enhancement necessary? AJNR Am J Neuroradiol. 2009;30(9):1665–71.

    PubMed  CAS  Google Scholar 

  112. Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology. 2004;232(3):635–52.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallav N. Shah M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shah, P.N. (2014). Neurological Imaging. In: Reinus, W. (eds) Clinician's Guide to Diagnostic Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8769-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8769-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8768-5

  • Online ISBN: 978-1-4614-8769-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics