Skip to main content

Helicase Unwinding at the Replication Fork

  • Chapter
  • First Online:
Molecular Biophysics for the Life Sciences

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 6))

Abstract

Ring-shaped hexameric helicases play an essential role of double-stranded DNA unwinding during genome replication. The NTPase-powered unwinding activity of the hexameric helicases is required both for replication initiation and fork progression. We describe ensemble biophysical methods to measure the unwinding activity of ring-shaped helicases during fork progression using the T7 bacteriophage replicative helicase gp4A′ as a model enzyme. These assays provide insights into the stepping mechanism of translocation, active or passive mechanism of unwinding, and regulation by associated proteins such as single strand DNA binding protein, DNA polymerase, and primase enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patel SS, Donmez I (2006) Mechanisms of helicases. J Biol Chem 281:18265–18268

    Article  PubMed  CAS  Google Scholar 

  2. Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    Article  PubMed  CAS  Google Scholar 

  3. Lohman TM, Tomko EJ, Wu CG (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 9:391–401

    Article  PubMed  CAS  Google Scholar 

  4. Egelman EH (1998) Bacterial helicases. J Struct Biol 124:123–128

    Article  PubMed  CAS  Google Scholar 

  5. Yodh JG, Schlierf M, Ha T (2010) Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys 43:185–217

    Article  PubMed  CAS  Google Scholar 

  6. Fischer CJ, Tomko EJ, Wu CG, Lohman TM (2012) Fluorescence methods to study DNA translocation and unwinding kinetics by nucleic acid motors. Methods Mol Biol 875:85–104

    Article  PubMed  CAS  Google Scholar 

  7. Costa A, Onesti S (2009) Structural biology of MCM helicases. Crit Rev Biochem Mol Biol 44:326–342

    Article  PubMed  CAS  Google Scholar 

  8. Patel SS, Picha KM (2000) Structure and function of hexameric helicases. Annu Rev Biochem 69:651–697

    Article  PubMed  CAS  Google Scholar 

  9. Rasnik I, Jeong YJ, McKinney SA, Rajagopal V, Patel SS, Ha T (2008) Branch migration enzyme as a Brownian ratchet. EMBO J 27:1727–1735

    Article  PubMed  CAS  Google Scholar 

  10. Kaplan DL, Davey MJ, O’Donnell M (2003) Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem 278:49171–49182

    Article  PubMed  CAS  Google Scholar 

  11. Sawaya MR, Guo S, Tabor S, Richardson CC, Ellenberger T (1999) Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99:167–177

    Article  PubMed  CAS  Google Scholar 

  12. Singleton MR, Sawaya MR, Ellenberger T, Wigley DB (2000) Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101:589–600

    Article  PubMed  CAS  Google Scholar 

  13. Thomsen ND, Berger JM (2009) Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139:523–534

    Article  PubMed  CAS  Google Scholar 

  14. Enemark EJ, Joshua-Tor L (2006) Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442:270–275

    Article  PubMed  CAS  Google Scholar 

  15. Liao JC, Jeong YJ, Kim DE, Patel SS, Oster G (2005) Mechanochemistry of t7 DNA helicase. J Mol Biol 350:452–475

    Article  PubMed  CAS  Google Scholar 

  16. Crampton DJ, Mukherjee S, Richardson CC (2006) DNA-induced switch from independent to sequential dTTP hydrolysis in the bacteriophage T7 DNA helicase. Mol Cell 21:165–174

    Article  PubMed  CAS  Google Scholar 

  17. Hacker KJ, Johnson KA (1997) A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry 36:14080–14087

    Article  PubMed  CAS  Google Scholar 

  18. Ahnert P, Patel SS (1997) Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5′- and 3′-tails of the forked DNA substrate. J Biol Chem 272:32267–32273

    Article  PubMed  CAS  Google Scholar 

  19. Jezewska MJ, Rajendran S, Bujalowska D, Bujalowski W (1998) Does single-stranded DNA pass through the inner channel of the protein hexamer in the complex with the Escherichia coli DnaB helicase? Fluorescence energy transfer studies. J Biol Chem 273:10515–10529

    Article  PubMed  CAS  Google Scholar 

  20. Kaplan DL (2000) The 3′-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J Mol Biol 301:285–299

    Article  PubMed  CAS  Google Scholar 

  21. Galletto R, Maillard R, Jezewska MJ, Bujalowski W (2004) Global conformation of the Escherichia coli replication factor DnaC protein in absence and presence of nucleotide cofactors. Biochemistry 43:10988–11001

    Article  PubMed  CAS  Google Scholar 

  22. Rothenberg E, Trakselis MA, Bell SD, Ha T (2007) MCM forked substrate specificity involves dynamic interaction with the 5′-tail. J Biol Chem 282:34229–34234

    Article  PubMed  CAS  Google Scholar 

  23. Betterton MD, Julicher F (2005) Opening of nucleic-acid double strands by helicases: active versus passive opening. Phys Rev E Stat Nonlin Soft Matter Phys 71:011904

    Article  PubMed  CAS  Google Scholar 

  24. Benkovic SJ, Valentine AM, Salinas F (2001) Replisome-mediated DNA replication. Annu Rev Biochem 70:181–208

    Article  PubMed  CAS  Google Scholar 

  25. Hamdan SM, Richardson CC (2009) Motors, switches, and contacts in the replisome. Annu Rev Biochem 78:205–243

    Article  PubMed  CAS  Google Scholar 

  26. Langston LD, Indiani C, O’Donnell M (2009) Whither the replisome: emerging perspectives on the dynamic nature of the DNA replication machinery. Cell Cycle 8:2686–2691

    Article  PubMed  CAS  Google Scholar 

  27. Eggleston AK, Rahim NA, Kowalczykowski SC (1996) A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res 24:1179–1186

    Article  PubMed  CAS  Google Scholar 

  28. Cheng W, Hsieh J, Brendza KM, Lohman TM (2001) E. coli Rep oligomers are required to initiate DNA unwinding in vitro. J Mol Biol 310:327–350

    Article  PubMed  CAS  Google Scholar 

  29. Picha KM, Patel SS (1998) Bacteriophage T7 DNA helicase binds dTTP, forms hexamers, and binds DNA in the absence of Mg2+. The presence of dTTP is sufficient for hexamer formation and DNA binding. J Biol Chem 273:27315–27319

    Article  PubMed  CAS  Google Scholar 

  30. Sen D, Nandakumar D, Tang GQ, Patel SS (2012) The human mitochondrial DNA helicase TWINKLE is both an unwinding and an annealing helicase. J Biol Chem 287(18):14545–14556

    Article  PubMed  CAS  Google Scholar 

  31. Torimura M, Kurata S, Yamada K, Yokomaku T, Kamagata Y, Kanagawa T, Kurane R (2001) Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal Sci 17:155–160

    Article  PubMed  CAS  Google Scholar 

  32. Noble JE, Wang L, Cole KD, Gaigalas AK (2005) The effect of overhanging nucleotides on fluorescence properties of hybridising oligonucleotides labelled with Alexa-488 and FAM fluorophores. Biophys Chem 113:255–263

    Article  PubMed  CAS  Google Scholar 

  33. Toseland CP, Webb MR (2010) Fluorescence tools to measure helicase activity in real time. Methods 51:259–268

    Article  PubMed  CAS  Google Scholar 

  34. Xi XG, Deprez E (2010) Monitoring helicase-catalyzed DNA unwinding by fluorescence anisotropy and fluorescence cross-correlation spectroscopy. Methods 51:289–294

    Article  PubMed  CAS  Google Scholar 

  35. Dou SX, Xi XG (2010) Fluorometric assays for characterizing DNA helicases. Methods 51:295–302

    Article  PubMed  CAS  Google Scholar 

  36. Donmez I, Patel SS (2008) Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase. EMBO J 27:1718–1726

    Article  PubMed  CAS  Google Scholar 

  37. Sun B, Johnson DS, Patel G, Smith BY, Pandey M, Patel SS, Wang MD (2011) ATP-induced helicase slippage reveals highly coordinated subunits. Nature 478:132–135

    Article  PubMed  CAS  Google Scholar 

  38. Manosas M, Spiering MM, Zhuang Z, Benkovic SJ, Croquette V (2009) Coupling DNA unwinding activity with primer synthesis in the bacteriophage T4 primosome. Nat Chem Biol 5:904–912

    Article  PubMed  CAS  Google Scholar 

  39. Eoff RL, Raney KD (2006) Intermediates revealed in the kinetic mechanism for DNA unwinding by a monomeric helicase. Nat Struct Mol Biol 13:242–249

    Article  PubMed  CAS  Google Scholar 

  40. Lucius AL, Maluf NK, Fischer CJ, Lohman TM (2003) General methods for analysis of sequential “n-step” kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding. Biophys J 85:2224–2239

    Article  PubMed  CAS  Google Scholar 

  41. Levin MK, Hingorani MM, Holmes RM, Patel SS, Carson JH (2009) Model-based global analysis of heterogeneous experimental data using gfit. Methods Mol Biol 500:335–359

    Article  PubMed  CAS  Google Scholar 

  42. Jeong YJ, Levin MK, Patel SS (2004) The DNA-unwinding mechanism of the ring helicase of bacteriophage T7. Proc Natl Acad Sci U S A 101:7264–7269

    Article  PubMed  CAS  Google Scholar 

  43. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83:3746–3750

    Article  PubMed  CAS  Google Scholar 

  44. Johnson DS, Bai L, Smith BY, Patel SS, Wang MD (2007) Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129:1299–1309

    Article  PubMed  CAS  Google Scholar 

  45. Lionnet T, Spiering MM, Benkovic SJ, Bensimon D, Croquette V (2007) Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proc Natl Acad Sci U S A 104:19790–19795

    Article  PubMed  CAS  Google Scholar 

  46. Ribeck N, Kaplan DL, Bruck I, Saleh OA (2010) DnaB helicase activity is modulated by DNA geometry and force. Biophys J 99:2170–2179

    Article  PubMed  CAS  Google Scholar 

  47. Rajagopal V, Patel SS (2008) Single strand binding proteins increase the processivity of DNA unwinding by the hepatitis C virus helicase. J Mol Biol 376:69–79

    Article  PubMed  CAS  Google Scholar 

  48. Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43:289–318

    Article  PubMed  CAS  Google Scholar 

  49. Frick DN, Richardson CC (2001) DNA primases. Annu Rev Biochem 70:39–80

    Article  PubMed  CAS  Google Scholar 

  50. Kusakabe T, Baradaran K, Lee J, Richardson CC (1998) Roles of the helicase and primase domain of the gene 4 protein of bacteriophage T7 in accessing the primase recognition site. EMBO J 17:1542–1552

    Article  PubMed  CAS  Google Scholar 

  51. Pandey M, Syed S, Donmez I, Patel G, Ha T, Patel SS (2009) Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature 462:940–943

    Article  PubMed  CAS  Google Scholar 

  52. Yuzhakov A, Kelman Z, O’Donnell M (1999) Trading places on DNA—a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96:153–163

    Article  PubMed  CAS  Google Scholar 

  53. Lee JB, Hite RK, Hamdan SM, Xie XS, Richardson CC, van Oijen AM (2006) DNA primase acts as a molecular brake in DNA replication. Nature 439:621–624

    Article  PubMed  CAS  Google Scholar 

  54. Stano NM, Jeong YJ, Donmez I, Tummalapalli P, Levin MK, Patel SS (2005) DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435:370–373

    Article  PubMed  CAS  Google Scholar 

  55. Manosas M, Spiering MM, Ding F, Croquette V, Benkovic SJ (2012) Collaborative coupling between polymerase and helicase for leading-strand synthesis. Nucleic Acids Res 40(13):6187–6198

    Article  PubMed  CAS  Google Scholar 

  56. Dumont S, Cheng W, Serebrov V, Beran RK, Tinoco I Jr, Pyle AM, Bustamante C (2006) RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439:105–108

    Article  PubMed  CAS  Google Scholar 

  57. Graham BW, Schauer GD, Leuba SH, Trakselis MA (2011) Steric exclusion and wrapping of the excluded DNA strand occurs along discrete external binding paths during MCM helicase unwinding. Nucleic Acids Res 39:6585–6595

    Article  PubMed  CAS  Google Scholar 

  58. Hohng S, Zhou R, Nahas MK, Yu J, Schulten K, Lilley DM, Ha T (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science 318:279–283

    Article  PubMed  CAS  Google Scholar 

  59. Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, Lohman TM, Ha T (2011) SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146:222–232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank former and current Patel Lab members for developing and testing the methods and models described in this review. This work was supported by National Institute of Health (NIH) grant GM55310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita S. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nandakumar, D., Patel, S.S. (2013). Helicase Unwinding at the Replication Fork. In: Allewell, N., Narhi, L., Rayment, I. (eds) Molecular Biophysics for the Life Sciences. Biophysics for the Life Sciences, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8548-3_9

Download citation

Publish with us

Policies and ethics