Skip to main content

Fluorescence Methods to Study DNA Translocation and Unwinding Kinetics by Nucleic Acid Motors

  • Protocol
  • First Online:
Spectroscopic Methods of Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 875))

Abstract

Translocation of nucleic acid motor proteins (translocases) along linear nucleic acids can be studied by monitoring either the time course of the arrival of the motor protein at one end of the nucleic acid or the kinetics of ATP hydrolysis by the motor protein during translocation using pre-steady state ensemble kinetic methods in a stopped-flow instrument. Similarly, the unwinding of double-stranded DNA or RNA by helicases can be studied in ensemble experiments by monitoring either the kinetics of the conversion of the double-stranded nucleic acid into its complementary single strands by the helicase or the kinetics of ATP hydrolysis by the helicase during unwinding. Such experiments monitor translocation of the enzyme along or unwinding of a series of nucleic acids labeled at one position (usually the end) with a fluorophore or a pair of fluorophores that undergo changes in fluorescence intensity or efficiency of fluorescence resonance energy transfer (FRET). We discuss how the pre-steady state kinetic data collected in these ensemble experiments can be analyzed by simultaneous global nonlinear least squares (NLLS) analysis using simple sequential “n-step” mechanisms to obtain estimates of the macroscopic rates and processivities of translocation and/or unwinding, the rate-limiting step(s) in these mechanisms, the average “kinetic step-size,” and the stoichiometry of coupling ATP binding and hydrolysis to movement along the nucleic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornberg RD (2007) The molecular basis of eukaryotic transcription. Proc Natl Acad Sci USA 104:12955–12961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lohman TM, Bjornson KP (1996) Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem 65:169–214

    Article  CAS  PubMed  Google Scholar 

  3. Lohman TM, Hsieh J, Maluf NK, Cheng W, Lucius AL, Fischer CJ, Brendza KM, Korolev S, Waksman G (2003) DNA helicases, motors that move along nucleic acids: lessons from the SF1 helicase superfamily. In: Hackney DD, Tamanoi F (eds) The Enzymes ATP and Molecular Motors, vol XXIII, pp 303–369 (Academic Press)

    Google Scholar 

  4. Matson SW, Kaiser-Rogers KA (1990) DNA helicases. Annu Rev Biochem 59:289–329

    Article  CAS  PubMed  Google Scholar 

  5. Lohman TM, Tomko EJ, Wu CG (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 9:391–401

    Article  CAS  PubMed  Google Scholar 

  6. Khaki AR, Field C, Malik S, Niedziela-Majka A, Leavitt SA, Wang R, Hung M, Sakowicz R, Brendza KM, Fischer CJ (2010) The macroscopic rate of nucleic acid translocation by Hepatitis C virus helicase NS3h is dependent on both sugar and base moieties. J Mol Biol 400:354–378

    Article  CAS  Google Scholar 

  7. Becker PB (2005) Nucleosome remodelers on track. Nat Struct Mol Biol 12:732–733

    Article  CAS  PubMed  Google Scholar 

  8. Fischer CJ, Saha A, Cairns BR (2007) Kinetic model for the ATP-dependent translocation of Saccharomyces cerevisiae RSC along double-stranded DNA. Biochemistry 46:12416–12426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fischer CJ, Yamada K, Fitzgerald DJ (2009) Kinetic mechanism for single stranded DNA binding and translocation by S. cerevisiae Isw2. Biochemistry 48:2960–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y (2011) The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J 30:2364–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kovall RA, Matthews BW (1998) Structural, functional, and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases. Proc Natl Acad Sci USA 95:7893–7897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kovall RA, Matthews BW (1999) Type II restriction endonucleases: structural, functional and evolutionary relationships. Curr Opin Chem Biol 3:578–583

    Article  CAS  PubMed  Google Scholar 

  13. Szczelkun MD (2002) Kinetic models of translocation, head-on collision, and DNA cleavage by type I restriction endonucleases. Biochemistry 41:2067–2074

    Article  CAS  PubMed  Google Scholar 

  14. Firman K, Szczelkun MD (2000) Measuring motion on DNA by the type I restriction endonuclease EcoR124I using triplex displacement. EMBO J 19:2094–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McClelland SE, Dryden DT, Szczelkun MD (2005) Continuous assays for DNA translocation using fluorescent triplex dissociation: application to type I restriction endonucleases. J Mol Biol 348:895–915

    Article  CAS  PubMed  Google Scholar 

  16. Delagoutte E, von Hippel PH (2003) Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: integration of helicases into cellular processes. Q Rev Biophys 36:1–69

    Article  CAS  PubMed  Google Scholar 

  17. Patel SS, Donmez I (2006) Mechanisms of helicases. J Biol Chem 281:18265–18268

    Article  CAS  PubMed  Google Scholar 

  18. Ali JA, Lohman TM (1997) Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science 275:377–380

    Article  CAS  PubMed  Google Scholar 

  19. Fischer CJ, Lohman TM (2004) ATP-dependent translocation of proteins along single-stranded DNA: models and methods of analysis of pre-steady state kinetics. J Mol Biol 344:1265–1286

    Article  CAS  PubMed  Google Scholar 

  20. Fischer CJ, Maluf NK, Lohman TM (2004) Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA. J Mol Biol 344:1287–1309

    Article  CAS  PubMed  Google Scholar 

  21. Lucius AL, Jason Wong C, Lohman TM (2004) Fluorescence stopped-flow studies of single turnover kinetics of E. coli RecBCD helicase-catalyzed DNA unwinding. J Mol Biol 339:731–750

    Article  CAS  PubMed  Google Scholar 

  22. Lucius AL, Maluf NK, Fischer CJ, Lohman TM (2003) General methods for analysis of sequential “n-step” kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding. Biophys J 85:2224–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lucius AL, Vindigni A, Gregorian R, Ali JA, Taylor AF, Smith GR, Lohman TM (2002) DNA unwinding step-size of E. coli RecBCD helicase determined from single turnover chemical quenched-flow kinetic studies. J Mol Biol 324:409–428

    Article  CAS  PubMed  Google Scholar 

  24. Fuller DN, Raymer DM, Kottadiel VI, Rao VB, Smith DE (2007) Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proc Natl Acad Sci USA 104:16868–16873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, Baskin RJ (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409:374–378

    Article  CAS  PubMed  Google Scholar 

  26. Lionnet T, Dawid A, Bigot S, Barre FX, Saleh OA, Heslot F, Allemand JF, Bensimon D, Croquette V (2006) DNA mechanics as a tool to probe helicase and translocase activity. Nucleic Acids Res 34:4232–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sisakova E, Weiserova M, Dekker C, Seidel R, Szczelkun MD (2008) The interrelationship of helicase and nuclease domains during DNA translocation by the molecular motor EcoR124I. J Mol Biol 384:1273–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brendza KM, Cheng W, Fischer CJ, Chesnik MA, Niedziela-Majka A, Lohman TM (2005) Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. Proc Natl Acad Sci USA 102:10076–10081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Niedziela-Majka A, Chesnik MA, Tomko EJ, Lohman TM (2007) Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. J Biol Chem 282:27076–27085

    Article  CAS  PubMed  Google Scholar 

  30. Tomko EJ, Fischer CJ, Niedziela-Majka A, Lohman TM (2007) A nonuniform stepping mechanism for E. coli UvrD monomer translocation along single-stranded DNA. Mol Cell 26:335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lucius AL, Lohman TM (2004) Effects of temperature and ATP on the kinetic mechanism and kinetic step-size for E. coli RecBCD helicase-catalyzed DNA unwinding. J Mol Biol 339:751–771

    Article  CAS  PubMed  Google Scholar 

  32. Jaques LB (1977) Determination of heparin and related sulfated mucopolysaccharides. Methods Biochem Anal 24:203–312

    Article  CAS  PubMed  Google Scholar 

  33. Dillingham MS, Wigley DB, Webb MR (2002) Direct measurement of single-stranded DNA translocation by PcrA helicase using the fluorescent base analogue 2-aminopurine. Biochemistry 41:643–651

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh J, Moore KJ, Lohman TM (1999) A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide. J Mol Biol 288:255–274

    Article  CAS  PubMed  Google Scholar 

  35. Wong I, Moore KJ, Bjornson KP, Hsieh J, Lohman TM (1996) ATPase activity of Escherichia coli Rep helicase is dramatically dependent on DNA ligation and protein oligomeric states. Biochemistry 35:5726–5734

    Article  CAS  PubMed  Google Scholar 

  36. Dillingham MS, Wigley DB, Webb MR (2000) Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39:205–212

    Article  CAS  PubMed  Google Scholar 

  37. Bjornson KP, Amaratunga M, Moore KJ, Lohman TM (1994) Single-turnover kinetics of helicase-catalyzed DNA unwinding monitored continuously by fluorescence energy transfer. Biochemistry 33:14306–14316

    Article  CAS  PubMed  Google Scholar 

  38. Wu CG, Lohman TM (2008) Influence of DNA end structure on the mechanism of initiation of DNA unwinding by the Escherichia coli RecBCD and RecBC helicases. J Mol Biol 382:312–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saikrishnan K, Powell B, Cook NJ, Webb MR, Wigley DB (2009) Mechanistic basis of 5′-3′ translocation in SF1B helicases. Cell 137:849–859

    Article  CAS  PubMed  Google Scholar 

  40. Tomko EJ, Fischer CJ, Lohman TM (2010). Ensemble methods for monitoring enzyme translocation along single stranded nucleic acids. Methods 51:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by startup funding from the University of Kansas (to C.J.F.) and by NIH grants GM045948 and GM030498 (to T.M.L) and P20 RR17708 from the Institutional Development Award (IDeA) Program of the National Center for Research Resources (to C.J.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Lohman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fischer, C.J., Tomko, E.J., Wu, C.G., Lohman, T.M. (2012). Fluorescence Methods to Study DNA Translocation and Unwinding Kinetics by Nucleic Acid Motors. In: Bujalowski, W. (eds) Spectroscopic Methods of Analysis. Methods in Molecular Biology, vol 875. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-806-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-806-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-805-4

  • Online ISBN: 978-1-61779-806-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics