Skip to main content

Gadd45 Stress Sensors in Preeclampsia

  • Chapter
  • First Online:
Gadd45 Stress Sensor Genes

Abstract

Preeclampsia is a pregnancy-induced complex of multiple pathological changes. Numerous stresses during pregnancy, including hypoxia, immune activation, inflammatory cytokines, and oxidative stress were reported as contributing factors to the preeclamptic pathology. Seeking common sensors of various stressors in preeclampsia is of new interest and can potentially benefit in disease prevention and treatment. Recent studies have highlighted the role of the Gadd45a protein as a stress sensor in preeclampsia. In response to various pathophysiological stressors, notably hypoxia, inflammatory cytokines, and AT1-AAs, Gadd45a activates Mkk3-p38 and or JNK signaling. This, in turn, results in immunological and inflammatory changes as well as triggering the production of circulating factors such as sFlt-1, which are believed to account for many of the pathophysiological-related symptoms of preeclampsia. Activation of inflammatory/immune responses in preeclampsia may function in a feedback loop to maintain elevated expression of Gadd45a protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACOG Committee on Practice Bulletins – Obstetrics (2002) ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol 99:159–167

    Article  Google Scholar 

  • Benyo DF, Smarason A, Redman CW, Sims C, Conrad KP (2001) Expression of inflammatory cytokines in placentas from women with preeclampsia. J Clin Endocrinol Metab 86(6):2505–2512

    Article  PubMed  CAS  Google Scholar 

  • Burton GJ, Jauniaux E (2004) Placental oxidative stress; from miscarriage to preeclampsia. J Soc Gynecol Investig 11:342–352

    Article  PubMed  CAS  Google Scholar 

  • Burton GJ, Yung HW, Cindrova-Davies T, Charnock-Jones DS (2009) Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30(Suppl A):S43–S48

    Article  PubMed  Google Scholar 

  • Carswell EA, Old RL, Kassel S, Green N, Fiore WF, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors (activated macrophage). Proc Natl Acad Sci USA 72(9):3666–3670

    Article  PubMed  CAS  Google Scholar 

  • Choudhury SR, Knapp LA (2001a) Human reproductive failure I: immunological factors. Hum Reprod Update 7(2):113–134

    Article  PubMed  CAS  Google Scholar 

  • Choudhury SR, Knapp LA (2001b) Human reproductive failure II: immunogenetic and interacting factors. Hum Reprod Update 7(2):135–160

    Article  PubMed  CAS  Google Scholar 

  • Conrad KP, Benyo DF (1997) Placental cytokines and the pathogenesis of preeclampsia. Am J Reprod Immunol 37(3):240–249

    Article  PubMed  CAS  Google Scholar 

  • Dechend R, Viedt C, Müller DN, Ugele B, Brandes RP, Wallukat G, Park JK, Janke J, Barta P, Theuer J, Fiebeler A, Homuth V, Dietz R, Haller H, Kreuzer J, Luft FC (2003) AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 107(12):1632–1639

    Article  PubMed  CAS  Google Scholar 

  • Dekker GA (1999) Risk factors for preeclampsia. Clin Obstet Gynecol 42:422

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117(14):3720–3732

    Article  PubMed  CAS  Google Scholar 

  • Fornace AJ Jr, Jackman J, Hollander MC, Hoffman-Liebermann B, Liebermann DA (1992) Genotoxic-stress-response genes and growth-arrest genes. gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann N Y Acad Sci 663:139–153

    Article  PubMed  CAS  Google Scholar 

  • Greer IA, Lyall F, Perera T, Boswell F, Macara LM (1994) Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? Obstet Gynecol 84(6):937–940

    PubMed  CAS  Google Scholar 

  • Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B, Liebermann DA (2005) hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24:7170–7179

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Gupta SK, Hoffman B, Liebermann DA (2006) Gadd45a and gadd45b protect hematopoietic cells from UV induced apoptosis via distinct signaling pathways including p38 activation and JNK inhibition. J Biol Chem 281:17552–17558

    Article  PubMed  CAS  Google Scholar 

  • Hubel CA (1999) Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med 222(3):222–235

    Article  PubMed  CAS  Google Scholar 

  • Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50(3):184–195

    Article  PubMed  CAS  Google Scholar 

  • Jauniaux E, Poston L, Burton GJ (2006) Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Update 12:747–755

    Article  PubMed  CAS  Google Scholar 

  • Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, Kalhan SC, Catalano PM (2002) TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 51(7):2207–2213

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto T (2010) IL-6: from its discovery to clinical applications. Int Immunol 22(5):347–352

    Article  PubMed  CAS  Google Scholar 

  • LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP (2007) Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep 9(6):480–485

    Article  PubMed  CAS  Google Scholar 

  • Li J, LaMarca B, Reckelhoff JF (2012) A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am J Physiol Heart Circ Physiol 303(1):H1–H8

    Article  PubMed  CAS  Google Scholar 

  • Liebermann DA, Hoffman B (2002) Myeloid differentiation (MyD)/growth arrest DNA damage (GADD) genes in tumor suppression, immunity& inflammation. Leukemia 16:527–541

    Article  PubMed  CAS  Google Scholar 

  • Liebermann DA, Hoffman B (2008) Gadd45 in stress signaling. J Mol Signal 3:15

    Article  PubMed  Google Scholar 

  • MacKay AP, Berg CJ, Atrash HK (2001) Pregnancy-related mortality from preeclampsia and eclampsia. Obstet Gynecol 97(4):533–538

    Article  PubMed  CAS  Google Scholar 

  • Makris A, Thornton C, Thompson J et al (2007) Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int 71:977

    Article  PubMed  CAS  Google Scholar 

  • Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111(5):649–658

    PubMed  CAS  Google Scholar 

  • Maynard SE, Venkatesha S, Thadhani R, Karumanchi SA (2005) Soluble Fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Pediatr Res 57(5 Pt 2):1R–7R

    Article  PubMed  Google Scholar 

  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43(4):477–503

    Article  PubMed  CAS  Google Scholar 

  • Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382

    Article  PubMed  CAS  Google Scholar 

  • Redman CW, Sargent IL (2003) Pre-eclampsia, the placenta and the maternal systemic inflammatory response – a review. Placenta 24(Suppl A):S21–S27

    Article  PubMed  Google Scholar 

  • Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308(5728):1592–1594

    Article  PubMed  CAS  Google Scholar 

  • Redman CW, Sargent IL (2009) Placental stress and pre-eclampsia: a revised view. Placenta 30(Suppl A):S38–S42

    Article  PubMed  Google Scholar 

  • Redman CW, Sacks GP, Sargent IL (1999) Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 180(2 Pt 1):499–506

    Article  PubMed  CAS  Google Scholar 

  • Salvador JM, Mittelstadt PR, Belova GI, Fornace AJ Jr, Ashwell JD (2005) The autoimmune suppressor Gadd45alpha inhibits the T cell alternative p38 activation pathway. Nat Immunol 6:396–402

    Article  PubMed  CAS  Google Scholar 

  • Shah DM (2005) Role of the renin-angiotensin system in the pathogenesis of preeclampsia. Am J Physiol Renal Physiol 288(4):F614–F625

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Nishimura M, Sakamoto M, Ikegaki I, Nakanishi T, Yoshimura M (1992) Effects of interleukin-1 beta on blood pressure, sympathetic nerve activity, and pituitary endocrine functions in anesthetized rats. Am J Hypertens 5(4 Pt 1):224–229

    Article  PubMed  CAS  Google Scholar 

  • Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediates activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530

    Article  PubMed  CAS  Google Scholar 

  • Teran E, Escudero C, Moya W, Flores M, Vallance P, Lopez-Jaramillo P (2001) Elevated C-reactive protein and pro-inflammatory cytokines in Andean women with pre-eclampsia. Int J Gynaecol Obstet 75(3):243–249

    Article  PubMed  CAS  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374

    Article  PubMed  CAS  Google Scholar 

  • Turner JA (2010) Diagnosis and management of pre-eclampsia: an update. Int J Womens Health 2:327–337

    Article  PubMed  CAS  Google Scholar 

  • Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12(6):642–649

    Article  PubMed  CAS  Google Scholar 

  • Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jüpner A, Baur E, Nissen E, Vetter K, Neichel D, Dudenhausen JW, Haller H, Luft FC (1999) Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 3:945–952

    Article  Google Scholar 

  • Wang Y, Walsh SW (1996) TNF alpha concentrations and mRNA expression are increased in preeclamptic placentas. J Reprod Immunol 32(2):157–169

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Patel G (2007) Partner change and perinatal outcomes: a systematic review. Paediatr Perinat Epidemiol 21(Suppl 1):46–57

    Article  PubMed  CAS  Google Scholar 

  • Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, Hicks MJ, Ramin SM, Kellems RE, Xia Y (2008) Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med 14:855–862

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ossie Geifman-Holtzman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geifman-Holtzman, O., Xiong, Y., Holtzman, E.J. (2013). Gadd45 Stress Sensors in Preeclampsia. In: Liebermann, D., Hoffman, B. (eds) Gadd45 Stress Sensor Genes. Advances in Experimental Medicine and Biology, vol 793. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8289-5_7

Download citation

Publish with us

Policies and ethics