Skip to main content

Catching the Next Wave: Patterning of the Drosophila Eye by the Morphogenetic Furrow

  • Chapter
  • First Online:
Molecular Genetics of Axial Patterning, Growth and Disease in the Drosophila Eye

Abstract

In 1864, August Weismann published the first drawing of the insect eye–antennal disc complex. In this image, he drew a line within the eye and described it as the border between the eye and antennal portions of the disc complex. One hundred and twelve years later, Donald Ready, Thomas Hanson, and Seymour Benzer demonstrated that this line, which they called the morphogenetic furrow, is actually the leading edge of a differentiating wave that traverses the eye disc of the fruit fly, Drosophila melanogaster, and transforms a field of undifferentiated and nonpatterned cells into an ordered array of periodically spaced ommatidia or unit eyes. In the 36 years since this seminal discovery, dozens of papers have focused on elucidating the molecular mechanisms that underlie the initiation and progression of the furrow as well as the many cellular changes that cells undergo as they enter, temporarily reside, and then exit the furrow. This review will summarize what is currently known about the cellular architecture of the furrow and the mechanisms that control its birth and propagation across the eye primordium. This chapter will also discuss the means by which the initiation of the furrow is restricted to a single point along the posterior margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bach EA, Vincent S, Zeidler MP, Perrimon N (2003) A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway. Genetics 165:1149–1166

    PubMed  CAS  Google Scholar 

  • Baker NE, Yu S, Han D (1996) Evolution of proneural atonal expression during distinct regulatory phases in the developing Drosophila eye. Curr Biol 6:1290–1301

    Article  PubMed  CAS  Google Scholar 

  • Basler K, Hafen E (1989) Dynamics of Drosophila eye development and temporal requirements of sevenless expression. Development 107:723–731

    PubMed  CAS  Google Scholar 

  • Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214

    Article  PubMed  CAS  Google Scholar 

  • Becker HJ (1957) Uber Rontgenmossaikflecken und Defektmutationen am Auge von Drosophila und die Entwicklungsphysiologie des Auges. Z Induk Abst Vererb Lehre 88:333–373

    CAS  Google Scholar 

  • Benlali A, Draskovic I, Hazelett DJ, Treisman JE (2000) act up controls actin polymerization to alter cell shape and restrict Hedgehog signaling in the Drosophila eye disc. Cell 101:271–281

    Article  PubMed  CAS  Google Scholar 

  • Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS (2002) Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev 16:2415–2427

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya A, Baker NE (2009) The HLH protein Extramacrochaetae is required for R7 cell and cone cell fates in the Drosophila eye. Dev Biol 327:288–300

    Article  PubMed  CAS  Google Scholar 

  • Blackman RK, Sanicola M, Raftery LA, Gillevet T, Gelbart WM (1991) An extensive 3′ cis-regulatory region directs the imaginal disk expression of decapentaplegic, a member of the TGF-b family in Drosophila. Development 111:657–665

    PubMed  CAS  Google Scholar 

  • Bonini NM, Leiserson WM, Benzer S (1993) The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72:379–395

    Article  PubMed  CAS  Google Scholar 

  • Borod ER, Heberlein U (1998) Mutual regulation of decapentaplegic and hedgehog during the initiation of differentiation in the Drosophila retina. Dev Biol 197:187–197

    Article  PubMed  CAS  Google Scholar 

  • Brennan CA, Ashburner M, Moses K (1998) Ecdysone pathway is required for furrow progression in the developing Drosophila eye. Development 125:2653–2664

    PubMed  CAS  Google Scholar 

  • Brown NL, Sattler CA, Markey DR, Carroll SB (1991) hairy gene function in the Drosophila eye: normal expression is dispensable but ectopic expression alters cell fates. Development 113:1245–1256

    PubMed  CAS  Google Scholar 

  • Brown NL, Sattler CA, Paddock SW, Carroll SB (1995) Hairy and emc negatively regulate morphogenetic furrow progression in the Drosophila eye. Cell 80:879–887

    Article  PubMed  CAS  Google Scholar 

  • Burke R, Basler K (1996) Hedgehog-dependent patterning in the Drosophila eye can occur in the absence of Dpp signaling. Dev Biol 179:360–368

    Article  PubMed  CAS  Google Scholar 

  • Cagan RL, Ready DF (1989a) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362

    Article  CAS  Google Scholar 

  • Cagan RL, Ready DF (1989b) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3:1099–1112

    Article  CAS  Google Scholar 

  • Campos-Ortega JA, Hofbauer A (1977) Cell clones and pattern formation on the lineage of photoreceptor cells in the compound eye of Drosophila. Roux Arch Dev Biol 181:227–245

    Article  Google Scholar 

  • Capdevila J, Estrada MP, Sanchez-Herrero E, Guerrero I (1994) The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO 13:71–82

    Google Scholar 

  • Chanut F, Heberlein U (1997a) Retinal morphogenesis in Drosophila: hints from an eye-specific decapentaplegic allele. Dev Genet 20:197–207

    Article  CAS  Google Scholar 

  • Chanut F, Heberlein U (1997b) Role of decapentaplegic in initiation and progression of the morphogenetic furrow in the developing Drosophila retina. Development 124:559–567

    CAS  Google Scholar 

  • Chanut F, Luk A, Heberlein U (2000) A screen for dominant modifiers of ro(Dom), a mutation that disrupts morphogenetic furrow progression in Drosophila, identifies groucho and hairless as regulators of atonal expression. Genetics 156:1203–1217

    PubMed  CAS  Google Scholar 

  • Chao JL, Tsai YC, Chiu SJ, Sun YH (2004) Localized Notch signal acts through eyg and upd to promote global growth in Drosophila eye. Development 131:3839–3847

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Halder G, Zhang Z, Mardon G (1999) Signaling by the TGF-b homolog decapentaplegic functions reiteratively within the network of genes controlling retinal cell fate determination in Drosophila. Development 126:935–943

    PubMed  CAS  Google Scholar 

  • Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996

    Article  PubMed  CAS  Google Scholar 

  • Cho KO, Choi KW (1998) Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature 396:272–276

    Article  PubMed  CAS  Google Scholar 

  • Cohen SM (1993) Imaginal disc development. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 747–841

    Google Scholar 

  • Corrigall D, Walther RF, Rodriguez L, Fichelson P, Pichaud F (2007) Hedgehog signaling is a principal inducer of Myosin-II-driven cell ingression in Drosophila epithelia. Dev Cell 13:730–742

    Article  PubMed  CAS  Google Scholar 

  • Curtiss J, Mlodzik M (2000) Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent. Development 127:1325–1336

    PubMed  CAS  Google Scholar 

  • Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M (1999) twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell 3:297–307

    Article  PubMed  CAS  Google Scholar 

  • Dietrich W (1909) Die Fazettenaugen der Dipteren. Z Wiss Zool 92:465–539

    Google Scholar 

  • Dokucu ME, Zipursky SL, Cagan RL (1996) Atonal, rough and the resolution of proneural clusters in the developing Drosophila retina. Development 122:4139–4147

    PubMed  CAS  Google Scholar 

  • Dominguez M (1999) Dual role for hedgehog in the regulation of the proneural gene atonal during ommatidia development. Development 126:2345–2353

    PubMed  CAS  Google Scholar 

  • Dominguez M, Celis JF de (1998) A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396:276–278

    Article  PubMed  CAS  Google Scholar 

  • Dominguez M, Hafen E (1997) Hedgehog directly controls initiation and propagation of retinal differentiation in the Drosophila eye. Genes Dev 11:3254–3264

    Article  PubMed  CAS  Google Scholar 

  • Edgar BA, O’Farrell PH (1989) Genetic control of cell division patterns in the Drosophila embryo. Cell 57:177–187

    Article  PubMed  CAS  Google Scholar 

  • Ekas LA, Baeg GH, Flaherty MS, Ayala-Camargo A, Bach EA (2006) JAK/STAT signaling promotes regional specification by negatively regulating wingless expression in Drosophila. Development 133:4721–4729

    Article  PubMed  CAS  Google Scholar 

  • Ellis HM, Spann DR, Posakony JW (1990) extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. Cell 61:27–38

    Article  PubMed  CAS  Google Scholar 

  • Fan SS, Ready DF (1997) Glued participates in distinct microtubule-based activities in Drosophila eye development. Development 124:1497–1507

    PubMed  CAS  Google Scholar 

  • Firth LC, Bhattacharya A, Baker NE (2010). Cell cycle arrest by a gradient of Dpp signaling during Drosophila eye development. BMC Dev Biol 10:28

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Vize JA, Mosley KL (1994) Marbles mutants: uncoupling cell determination and nuclear migration in the developing Drosophila eye. Development 120:2609–2618

    PubMed  CAS  Google Scholar 

  • Frankfort BJ, Mardon G (2002) R8 development in the Drosophila eye: a paradigm for neural selection and differentiation. Development 129:1295–1306

    PubMed  CAS  Google Scholar 

  • Frankfort BJ, Nolo R, Zhang Z, Bellen H, Mardon G (2001) senseless repression of rough is required for R8 photoreceptor differentiation in the developing Drosophila eye. Neuron 32:403–414

    Article  PubMed  CAS  Google Scholar 

  • Freeman M (1994) The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech Dev 48:25–33

    Article  PubMed  CAS  Google Scholar 

  • Freeman M (1996) Reiterative use of the EGF Receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87:651–660

    Article  PubMed  CAS  Google Scholar 

  • Freeman M (1997) Cell determination strategies in the Drosophila eye. Development 124:261–270

    PubMed  CAS  Google Scholar 

  • Garrell J, Modolell J (1990) The Drosophila extramacrochaetae locus, an antagonist of proneural genes that, like these genes, encodes a helix-loop-helix protein. Cell 61:39–48

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez F, Swales L, Bejsovec A, Skaer H, Martinez Arias A (1991) Secretion and movement of wingless protein in the epidermis of the Drosophila embryo. Mech Dev 35:43–54

    Article  PubMed  CAS  Google Scholar 

  • Greenwood S, Struhl G (1999) Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 126:5795–5808

    PubMed  CAS  Google Scholar 

  • Gutierrez-Avino FJ, Ferres-Marco D, Dominguez M (2009) The position and function of the Notch-mediated eye growth organizer: the roles of JAK/STAT and four-jointed. EMBO Rep 10:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Hazelett DJ, Bourouis M, Walldorf U, Treisman JE (1998) decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125:3741–3751

    PubMed  CAS  Google Scholar 

  • Heberlein U, Mlodzik M, Rubin GM (1991) Cell-fate determination in the developing Drosophila eye: role of the rough gene. Development 112:703–712

    PubMed  CAS  Google Scholar 

  • Heberlein U, Singh CM, Luk AY, Donohoe TJ (1995) Growth and differentiation in the Drosophila eye coordinated by hedgehog. Nature 373:709–711

    Article  PubMed  CAS  Google Scholar 

  • Heberlein U, Wolff T, Rubin GM (1993) The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75:913–926

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk J, DiNardo S (1994) Drosophila hedgehog acts as a morphogen in cellular patterning. Cell 76:449–460

    Article  PubMed  CAS  Google Scholar 

  • Held LI (2002) Imaginal discs: the genetic and cellular logic of pattern formation. Developmental and cell biology series, vol 39. Cambridge Press, Cambridge, p 460

    Book  Google Scholar 

  • Horsfield J, Penton A, Secombe J, Hoffman FM, Richardson H (1998) decapentaplegic is required for arrest in G1 phase during Drosophila eye development. Development 125:5069–5078

    PubMed  CAS  Google Scholar 

  • Houalla T, Hien Vuong D, Ruan W, Suter B, Rao Y (2005) The Ste20-like kinase misshapen functions together with Bicaudal-D and dynein in driving nuclear migration in the developing drosophila eye. Mech Dev 122:97–108

    Article  PubMed  CAS  Google Scholar 

  • Ives P (1950) New mutant report: bar-3. Dros Info Serv 24:58

    Google Scholar 

  • Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) atonal is the proneural gene for Drosophila photoreceptors. Nature 369:398–400

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP, Sun Y, Jan LY, Jan YN (1995) Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121:2019–2030

    PubMed  CAS  Google Scholar 

  • Jones NA, Kuo YM, Sun YH, Beckendorf SK (1998) The Drosophila Pax gene eye gone is required for embryonic salivary duct development. Development 125:4163–4174

    PubMed  CAS  Google Scholar 

  • Jun S, Wallen RV, Goriely A, Kalionis B, Desplan C (1998) Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition. Proc Natl Acad Sci U S A 95:13720–13725

    Article  PubMed  CAS  Google Scholar 

  • Jurgens G, Hartenstein V (1993) The terminal regions of the body plan. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 687–746

    Google Scholar 

  • Kango-Singh M, Singh A, Henry Sun Y (2003) Eyeless collaborates with Hedgehog and Decapentaplegic signaling in Drosophila eye induction. Dev Biol 256:49–60

    Article  PubMed  CAS  Google Scholar 

  • Kenyon KL, Ranade SS, Curtiss J, Mlodzik M, Pignoni F (2003) Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Dev Cell 5:403–414

    Article  PubMed  CAS  Google Scholar 

  • Kimberly EL, Hardin J (1998) Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev Biol 204:235–250

    Article  PubMed  CAS  Google Scholar 

  • Kumar JP (2010) Retinal determination the beginning of eye development. Curr Top Dev Biol 93:1–28

    Article  PubMed  Google Scholar 

  • Kumar JP (2011) My what big eyes you have: how the Drosophila retina grows. Dev Neurobiol 71:1133–1152

    Article  PubMed  CAS  Google Scholar 

  • Kumar JP (2012) Building an ommatidium one cell at a time. Dev Dyn 241:136–149

    Article  PubMed  Google Scholar 

  • Kumar JP, Moses K (2001a) EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell 104:687–697

    Article  CAS  Google Scholar 

  • Kumar JP, Moses K (2001b) The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development. Development 128:2689–2697

    CAS  Google Scholar 

  • Kumar JP, Tio M, Hsiung F, Akopyan S, Gabay L, Seger R, Shilo BZ, Moses K (1998) Dissecting the roles of the Drosophila EGF receptor in eye development and MAP kinase activation. Development 125:3875–3885

    PubMed  CAS  Google Scholar 

  • Lebovitz RM, Ready DF (1986) Ommatidial development in Drosophila eye disc fragments. Dev Biol 117:663–671

    Article  PubMed  CAS  Google Scholar 

  • Lee JJ, Kessler DP von, Parks S, Beachy PA (1992) Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71:33–50

    Article  PubMed  CAS  Google Scholar 

  • Lopes CS, Casares F (2009) hth maintains the pool of eye progenitors and its downregulation by Dpp and Hh couples retinal fate acquisition with cell cycle exit. Dev Biol 339:78–88

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Liu H, Zhou Y, Moses K (1996) Identification and characterization of autosomal genes that interact with glass in the developing Drosophila eye. Genetics 142:1199–1213

    PubMed  CAS  Google Scholar 

  • Ma C, Moses K (1995) wingless and patched are negative regulators of the morphogenetic furrow and can affect tissue polarity in the developing Drosophila compound eye. Development 121:2279–2289

    PubMed  CAS  Google Scholar 

  • Ma C, Zhou Y, Beachy PA, Moses K (1993) The segment polarity gene hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye. Cell 75:927–938

    Article  PubMed  CAS  Google Scholar 

  • Massague J (1996) TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 85:947–950

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Polyak K (1995) Mammalian antiproliferative signals and their targets. Curr Opin Genet Dev 5:91–96

    Article  PubMed  CAS  Google Scholar 

  • Masucci JD, Miltenberger RJ, Hoffmann FM (1990) Pattern-specific expression of the Drosophila decapentaplegic gene in imaginal disks is regulated by 3’ cis-regulatory elements. Genes Dev 4:2011–2023

    Article  PubMed  CAS  Google Scholar 

  • Mohler J (1988) Requirements for hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics 120:1061–1072

    PubMed  CAS  Google Scholar 

  • Mosley-Bishop KL, Li Q, Patterson L, Fischer JA (1999) Molecular analysis of the klarsicht gene and its role in nuclear migration within differentiating cells of the Drosophila eye. Curr Biol 9:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Mozer BA (2001) Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development. Dev Biol 233:380–393

    Article  PubMed  CAS  Google Scholar 

  • Padgett RW, St Johnston RD, Gelbart WM (1987) A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature 325:81–84

    Article  PubMed  CAS  Google Scholar 

  • Pan D, Rubin GM (1995) cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell 80:543–552

    Article  PubMed  CAS  Google Scholar 

  • Panganiban GE, Rashka KE, Neitzel MD, Hoffmann FM (1990a) Biochemical characterization of the Drosophila dpp protein, a member of the transforming growth factor beta family of growth factors. Mol Cell Biol 10:2669–2677

    CAS  Google Scholar 

  • Panganiban GE, Reuter R, Scott MP, Hoffmann FM (1990b) A Drosophila growth factor homolog, decapentaplegic, regulates homeotic gene expression within and across germ layers during midgut morphogenesis. Development 110:1041–1050

    CAS  Google Scholar 

  • Papayannopoulos V, Tomlinson A, Panin VM, Rauskolb C, Irvine KD (1998) Dorsal-ventral signaling in the Drosophila eye. Science 281:2031–2034

    Article  PubMed  CAS  Google Scholar 

  • Patterson K, Molofsky AB, Robinson C, Acosta S, Cater C, Fischer JA (2004) The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol Biol Cell 15(2):600–610

    Article  PubMed  CAS  Google Scholar 

  • Pauli T, Seimiya M, Blanco J, Gehring WJ (2005) Identification of functional sine oculis motifs in the autoregulatory element of its own gene, in the eyeless enhancer and in the signalling gene hedgehog. Development 132:2771–2782

    Article  PubMed  CAS  Google Scholar 

  • Peng HW, Slattery M, Mann RS (2009) Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev 23:2307–2319

    Article  PubMed  CAS  Google Scholar 

  • Penton A, Selleck SB, Hoffmann FM (1997) Regulation of cell cycle synchronization by decapentaplegic during Drosophila eye development. Science 275:203–206

    Article  PubMed  CAS  Google Scholar 

  • Pepple KL, Atkins M, Venken K, Wellnitz K, Harding M, Frankfort B, Mardon G (2008) Two-step selection of a single R8 photoreceptor: a bistable loop between senseless and rough locks in R8 fate. Development 135:4071—4078

    Google Scholar 

  • Pfeiffer S, Vincent JP (1999) Signalling at a distance: transport of Wingless in the embryonic epidermis of Drosophila. Semin Cell Dev Biol 10:303–309

    Article  PubMed  CAS  Google Scholar 

  • Pignoni F, Zipursky SL (1997) Induction of Drosophila eye development by Decapentaplegic. Development 124:271–278

    PubMed  CAS  Google Scholar 

  • Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans (see comments). Science 265(5173):785–789

    Article  PubMed  CAS  Google Scholar 

  • Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53:217–240

    Article  PubMed  CAS  Google Scholar 

  • Richardson H, O’Keefe LV, Marty T, Saint R (1995) Ectopic cyclin E expression induces premature entry into S phase and disrupts pattern formation in the Drosophila eye imaginal disc. Development 121:3371–3379

    PubMed  CAS  Google Scholar 

  • Rogers EM, Brennan CA, Mortimer NT, Cook S, Morris AR, Moses K (2005) Pointed regulates an eye-specific transcriptional enhancer in the Drosophila hedgehog gene, which is required for the movement of the morphogenetic furrow. Development 132:4833–4843

    Article  PubMed  CAS  Google Scholar 

  • Royet J, Finkelstein R (1996) hedgehog, wingless and othrodenticle specify adult head development in Drosophila. Development 122:1849–1858

    PubMed  CAS  Google Scholar 

  • Royet J, Finkelstein R (1997) Establishing primordia in the Drosophila eye-antennal imaginal disc: the role of decapentaplegic, wingless and hedgehog. Development 124:4793–4800

    PubMed  CAS  Google Scholar 

  • Serikaku MA, O’Tousa JE (1994) sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 138:1137–1150

    PubMed  CAS  Google Scholar 

  • Singh A, Choi KW (2003) Initial state of the Drosophila eye before dorsoventral specification is equivalent to ventral. Development 130:6351–6360

    Article  PubMed  CAS  Google Scholar 

  • Struhl G (1981) A blastoderm fate map of compartments and segments of the Drosophila head. Dev Biol 84:386–396

    Article  PubMed  CAS  Google Scholar 

  • Strutt DI, Mlodzik M (1997) Hedgehog is an indirect regulator of morphogenetic furrow progression in the Drosophila eye disc. Development 124:3233–3240

    PubMed  CAS  Google Scholar 

  • Strutt DI, Wiersdorff V, Mlodzik M (1995) Regulation of furrow progression in the Drosophila eye by cAMP-dependent protein kinase A. Nature 373:705–709

    Article  PubMed  CAS  Google Scholar 

  • Sun YH, Tsai CJ, Green MM, Chao JL, Yu CT, Jaw TJ, Yeh JY, Bolshakov VN (1995) White as a reporter gene to detect transcriptional silencers specifying position-specific gene expression during Drosophila melanogaster eye development. Genetics 141:1075–1086

    PubMed  CAS  Google Scholar 

  • Swan A, Nguyen T, Suter B (1999) Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat Cell Biol 1:444–449

    Article  PubMed  CAS  Google Scholar 

  • Tabata T, Kornberg TB (1994) Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76:89–102

    Article  PubMed  CAS  Google Scholar 

  • Tearle R, Tomlinson A, Saint R (1994) The dominant Drop eye mutations of Drosophila melanogaster define two loci implicated in normal eye development. Mol Gen Genet 244:426–434

    Article  PubMed  CAS  Google Scholar 

  • Thomas BJ, Gunning DA, Cho J, Zipursky L (1994) Cell cycle progression in the developing Drosophila eye: roughex encodes a novel protein required for the establishment of G1. Cell 77:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Thomas BJ, Zavitz KH, Dong X, Lane ME, Weigmann K, Finley RL Jr, Brent R, Lehner CF, Zipursky SL (1997) Roughex down-regulates G2 cyclins in G1. Genes Dev 11:1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Tio M, Ma C, Moses K (1994) Spitz, a Drosophila homolog of transforming growth factor-alpha, is required in the founding photoreceptor cells of the compound eye facets. Mech Dev 48:13–23

    Article  PubMed  CAS  Google Scholar 

  • Tio M, Moses K (1997) The Drosophila TGF alpha homolog Spitz acts in photoreceptor recruitment in the developing retina. Development 124:343–351

    PubMed  CAS  Google Scholar 

  • Tomlinson A (1985). The cellular dynamics of pattern formation in the eye of Drosophila. J Embryol Exp Morphol 89:313–331

    PubMed  CAS  Google Scholar 

  • Tomlinson A, Ready DF (1987) Neuronal differentiation in the Drosophila ommatidium. Dev Biol 120:366–376

    Article  PubMed  CAS  Google Scholar 

  • Treisman JE, Rubin GM (1995) Wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development 121:3519–3527

    PubMed  CAS  Google Scholar 

  • Tsai YC, Sun YH (2004) Long-range effect of upd, a ligand for Jak/STAT pathway, on cell cycle in Drosophila eye development. Genesis 39:141–153

    Article  PubMed  CAS  Google Scholar 

  • Tsai YC, Yao JG, Chen PH, Posakony JW, Barolo S, Kim J, Sun YH (2007) Upd/Jak/STAT signaling represses wg transcription to allow initiation of morphogenetic furrow in Drosophila eye development. Dev Biol 306:760–771

    Article  PubMed  CAS  Google Scholar 

  • den Heuvel M van, Nusse R, Johnston P, Lawrence PA (1989) Distribution of the wingless gene product in Drosophila embryos: a protein involved in cell-cell communication. Cell 59:739–749

    Article  Google Scholar 

  • Van Doren M, Ellis HM, Posakony JW (1991) The Drosophila extramacrochaetae protein antagonizes sequence-specific DNA binding by daughterless/achaete-scute protein complexes. Development 113:245–255

    PubMed  CAS  Google Scholar 

  • Waddington CH, Perry MM (1960) The ultrastructure of the developing eye of Drosophila. Proc Roy Soc Biol Sci 153:155–178

    Article  Google Scholar 

  • Wehrli M, Tomlinson A (1995) Epithelial planar polarity in the developing Drosophila eye. Development 121:2451–2459

    PubMed  CAS  Google Scholar 

  • Wiersdorff V, Lecuit T, Cohen SM, Mlodzik M (1996) Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 122:2153–2162

    PubMed  CAS  Google Scholar 

  • Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113:841–850

    PubMed  CAS  Google Scholar 

  • Yao JG, Weasner BM, Wang LH, Jang CC, Weasner B, Tang CY, Salzer CL, Chen CH, Hay B, Sun YH et al (2008) Differential requirements for the Pax6(5a) genes eyegone and twin of eyegone during eye development in Drosophila. Dev Biol 315(2):535–551

    Article  PubMed  CAS  Google Scholar 

  • Zelhof AC, Ghbeish N, Tsai C, Evans RM, McKeown M (1997) A role for ultraspiracle, the Drosophila RXR, in morphogenetic furrow movement and photoreceptor cluster formation. Development 124:2499–2506

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank everyone who has contributed to our understanding of the mechanisms that regulate the initiation and progression of the morphogenetic furrow. I would like to also apologize to anyone whose work is not cited here. This work was supported by a grant from the National Eye Institute (R01 EY4863) to Justin P. Kumar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin P. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, J. (2013). Catching the Next Wave: Patterning of the Drosophila Eye by the Morphogenetic Furrow. In: Singh, A., Kango-Singh, M. (eds) Molecular Genetics of Axial Patterning, Growth and Disease in the Drosophila Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8232-1_3

Download citation

Publish with us

Policies and ethics