Skip to main content

Response of Gap Junction-Coupled Dendrites: A Sum-Over-Trips Approach

  • Chapter
  • First Online:
The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

Abstract

Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. The impulse response function for branched dendritic trees can be calculated using a so-called sum-over-trips approach. In this chapter we extend this formalism to treat networks of dendritic trees connected via dendro-dendritic gap junctions. To illustrate the usefulness of this extended formalism for understanding how gap junctions can contribute to signal integration in neural networks, we consider how they affect somatic voltages in a simple two neuron network with gap junction coupling between distal dendrites. We find that proximal input on one cell can strongly innervate the soma of that cell though the spread of charge to the gap junction-coupled cell is weak. In contrast distal inputs on one cell weakly innervate the soma of that cell though charge can spread effectively to the gap junction-coupled cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF (1992) Simple diagrammatic rules for solving dendritic cable problems. Physica A 185:343–356

    Article  Google Scholar 

  • Abbott LF, Fahri E, Gutmann S (1991) The path integral for dendritic trees. Biol Cybern 66:49–60

    Article  PubMed  CAS  Google Scholar 

  • Agmon-Snir H (1995) A novel theoretical approach to the analysis of dendritic transients. Biophys J 69:1633–1656

    Article  PubMed  CAS  Google Scholar 

  • Alvarez AV, Chow CC, Bockstaele EJV, Williams JT (2002) Frequency-dependent synchrony in locus ceruleus: role of electrotonic coupling. Proc Natl Acad Sci USA 99(6):4032–4036

    Article  PubMed  CAS  Google Scholar 

  • Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27(35):9247–9251

    Article  PubMed  CAS  Google Scholar 

  • Bennet MVL, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    Article  Google Scholar 

  • Bressloff PC (1995) Dynamics of a compartmental integrate-and-fire neuron without dendritic potential reset. Physica D 80:399–412

    Article  Google Scholar 

  • Caudron Q, Donnelly SR, Brand SPC, Timofeeva Y (2012) Computational convergence of the path integral for real dendritic morphologies. J Math Neurosci 2(11)

    Google Scholar 

  • Coombes S (2008) Neuronal networks with gap junctions: a study of piece-wise linear planar neuron models. SIAM J Appl Dyn Syst 7:1101–1129

    Article  Google Scholar 

  • Coombes S, Bressloff PC (2003) Saltatory waves in the spike-diffuse-spike model of active dendritic spines. Phys Rev Lett 91:028102(1–4)

    Google Scholar 

  • Coombes S, Timofeeva Y, Svensson CM, Lord GJ, Josic K, Cox SJ, Colbert CM (2007) Branching dendrites with resonant membrane: a “sum-over-trips” approach. Biol Cybern 97:137–149

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout BG, Terman DH (2010) Mathematical foundations of neuroscience. Springer, Berlin

    Book  Google Scholar 

  • Fukuda T, Kosaka T (2000) Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J Neurosci 20:1519–1528

    PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75

    Article  PubMed  CAS  Google Scholar 

  • Hamzei-Sichani F, Kamasawa N, Janssen WGM, Yasumura T, Davidson KGV, Hof PR, wearne SL, Stewart MG, Young SR, Whittington MA, Rash JE, Traub RD (2007) Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze-fracture replica immunogold labeling. Proc Natl Acad Sci USA 104:12548–12553

    Google Scholar 

  • Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (2004) Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta 1662:113–137

    Article  PubMed  CAS  Google Scholar 

  • Hughes SW, Crunelli V (2007) Just a phase they’re going through: the complex interaction of intrinsic high-threshold bursting and gap junctions in the generation of thalamic α and θ rhythms. Int J Psychophysiol 74:3–17

    Article  Google Scholar 

  • London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532

    Article  PubMed  CAS  Google Scholar 

  • Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895–903

    Article  PubMed  CAS  Google Scholar 

  • Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160

    Article  PubMed  CAS  Google Scholar 

  • Martone ME, Zhang S, Gupta A, Qian X, He H, Price DL, Wong M, Santini S, Ellisman MH (2003) The cell-centered database: a database for multiscale structural and protein localization data from light and electron microscopy. Neuroinformatics 1(4):379–395

    Article  PubMed  Google Scholar 

  • Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI (2006) Dynamical principles in neuroscience. Rev Mod Phys 78:1213–1265

    Article  Google Scholar 

  • Rall W (1962) Theory of physiological properties of dendrites. Ann N Y Acad Sci 96:1071–1092

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Dillman RK, Bilhartz BL, Duffy HS, Whalen LR, Yasumura T (1996) Mixed synapses discovered and mapped throughout mammalian spinal cord. Proc Natl Acad Sci USA 93:4235–4239

    Article  PubMed  CAS  Google Scholar 

  • Saraga F, Ng L, Skinner FK (2006) Distal gap junctions and active dendrites can tune network dynamics. J Neurophysiol 95:1669–1682

    Article  PubMed  Google Scholar 

  • Schwemmer MA, Lewis TJ (2012) Bistability in a leaky integrate-and-fire neuron with a passive dendrite. SIAM J Appl Dyn Syst 11:507–539

    Article  Google Scholar 

  • Segev I, Rinzel J, Shepherd GM (eds) (1995) The theoretical foundations of dendritic function: selected papers of Wilfrid Rall with commentaries. MIT, Cambridge

    Google Scholar 

  • Sotelo C, Llinas R, Baker R (1974) Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol 37:541–559

    PubMed  CAS  Google Scholar 

  • Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of computational modelling in neuroscience. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Svensson CM, Coombes S (2009) Mode locking in a spatially extended neuron model: active soma and compartmental tree. Int J Bifurcat Chaos 19:2597–2607

    Article  Google Scholar 

  • Timofeeva Y (2010) Travelling waves in a model of quasi-active dendrites with active spines. Physica D 239(9):494–503

    Article  Google Scholar 

  • Timofeeva Y, Lord GJ, Coombes S (2006) Spatio-temporal filtering properties of a dendritic cable with active spines. J Comput Neurosci 21:293–306

    Article  PubMed  Google Scholar 

  • Timofeeva Y, Coombes S, Michieletto D (2013) Gap junctions, dendrites and resonances: a recipe for tuning network dynamics. J Math Neurosci 3:15

    Google Scholar 

  • Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FEN, Whittington MA (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21:9478–9486

    PubMed  CAS  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology volume I. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Velazquez JLP, Carlen PL (2000) Gap junctions, synchrony and seizures. Trends Neurosci 23:68–74

    Article  Google Scholar 

  • Vervaeke K, Lőrincz A, Nusser Z, Silver RA (2012) Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science 335:1624–1628

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Coombes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Timofeeva, Y., Coombes, S. (2014). Response of Gap Junction-Coupled Dendrites: A Sum-Over-Trips Approach. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_27

Download citation

Publish with us

Policies and ethics