Skip to main content

Nanotherapeutics in Multidrug Resistance

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery
  • 2906 Accesses

Abstract

The development of resistance to a variety of chemotherapeutic agents, also known as multidrug resistance (MDR), is a main impediment to the success of cancer chemotherapy, which refers to many factors such as increased efflux, blocked apoptosis, decreased drug influx, and altered cell cycle regulation. Considerable efforts have been devoted to develop chemosensitizers to conquer drug resistance, while their safety and unwanted pharmacokinetic drug interaction hindered their clinical applicability. Nano-sized drug carriers have great superiority in overcoming drug resistance due to the improved therapeutic index of drugs, enhanced drug targeting in tumor sites, and success in escaping from recognition of ABC transporter-mediated drug efflux. This chapter summarizes the most recent developments in the field of nanotherapeutics toward overcoming drug resistance by drug-targeted delivery, increased intracellular availability, changed subcellular localization, and combination of drug delivery with the agents that regulate intracellular pH, energy delivery, and apoptotic threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM (2008) Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 34(7):592–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 7(4):597–615

    Article  CAS  Google Scholar 

  3. Milane L, Duan Z, Amiji M (2011) Development of egfr-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm 8(1):185–203

    Article  CAS  PubMed  Google Scholar 

  4. Wu CP, Hsieh CH, Wu YS (2011) The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol Pharm 8(6):1996–2011

    Article  CAS  PubMed  Google Scholar 

  5. Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53(19):6811–6824

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    Article  CAS  PubMed  Google Scholar 

  7. Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6(3):928–939

    Article  CAS  PubMed  Google Scholar 

  8. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H (2009) Co-delivery of doxorubicin and bcl-2 sirna by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5(23):2673–2677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706

    Article  CAS  PubMed  Google Scholar 

  10. Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2011) Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and mri imaging for cancer therapy. ACS Appl Mater Interfaces 3(3):842–856

    Article  CAS  PubMed  Google Scholar 

  11. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2(6):789–803

    Article  CAS  Google Scholar 

  12. Fan Y, Li C, Cao H, Li F, Chen D (2012) The intranuclear release of a potential anticancer drug from small nanoparticles that are derived from intracellular dissociation of large nanoparticles. Biomaterials 33(16):4220–4228

    Article  CAS  PubMed  Google Scholar 

  13. Lei T, Srinivasan S, Tang Y, Manchanda R, Nagesetti A, Fernandez-Fernandez A, McGoron AJ (2011) Comparing cellular uptake and cytotoxicity of targeted drug carriers in cancer cell lines with different drug resistance mechanisms. Nanomedicine 7(3):324–332

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Susa M, Iyer AK, Ryu K, Hornicek FJ, Mankin H, Amiji MM, Duan Z (2009) Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer 9:399

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wang X, Li J, Wang Y, Cho KJ, Kim G, Gjyrezi A, Koenig L, Giannakakou P, Shin HJ, Tighiouart M, Nie S, Chen ZG, Shin DM (2009) Hft-t, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano 3(10):3165–3174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Liu XQ, Xiong MH, Shu XT, Tang RZ, Wang J (2012) Therapeutic delivery of sirna silencing hif-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol Pharm 9(10):2863–2874

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Li J, Wang Y, Koenig L, Gjyrezi A, Giannakakou P, Shin EH, Tighiouart M, Chen ZG, Nie S, Shin DM (2011) A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano 5(8):6184–6194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Shalviri A, Raval G, Prasad P, Chan C, Liu Q, Heerklotz H, Rauth AM, Wu XY (2012) Ph-dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Eur J Pharm Biopharm 82(3):587–597

    Article  CAS  PubMed  Google Scholar 

  19. Susa M, Iyer AK, Ryu K, Choy E, Hornicek FJ, Mankin H, Milane L, Amiji MM, Duan Z (2010) Inhibition of abcb1 (mdr1) expression by an sirna nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLoS One 5(5):e10764

    Article  PubMed Central  PubMed  Google Scholar 

  20. Wang Z, Yu Y, Ma J, Zhang H, Wang X, Wang J, Zhang X, Zhang Q (2012) Lyp-1 modification to enhance delivery of artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics. Mol Pharm 9(9):2646–2657

    Article  CAS  PubMed  Google Scholar 

  21. Han M, Diao YY, Jiang HL, Ying XY, Chen DW, Liang WQ, Gao JQ (2011) Molecular mechanism study of chemosensitization of doxorubicin-resistant human myelogenous leukemia cells induced by a composite polymer micelle. Int J Pharm 420(2):404–411

    Article  CAS  PubMed  Google Scholar 

  22. Qiu L, Zhang L, Zheng C, Wang R (2011) Improving physicochemical properties and doxorubicin cytotoxicity of novel polymeric micelles by poly(epsilon-caprolactone) segments. J Pharm Sci 100(6):2430–2442

    Article  CAS  PubMed  Google Scholar 

  23. Xiao L, Xiong X, Sun X, Zhu Y, Yang H, Chen H, Gan L, Xu H, Yang X (2011) Role of cellular uptake in the reversal of multidrug resistance by peg-b-pla polymeric micelles. Biomaterials 32(22):5148–5157

    Article  CAS  PubMed  Google Scholar 

  24. Xu YY, Du YZ, Yuan H, Liu LN, Niu YP, Hu FQ (2011) Improved cytotoxicity and multidrug resistance reversal of chitosan based polymeric micelles encapsulating oxaliplatin. J Drug Target 19(5):344–353

    Article  CAS  PubMed  Google Scholar 

  25. Pinzon-Daza M, Garzon R, Couraud P, Romero I, Weksler B, Ghigo D, Bosia A, Riganti C (2012) The association of statins plus ldl receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells. Br J Pharmacol 167(7):1431–1447

    Article  CAS  PubMed  Google Scholar 

  26. Zhao YZ, Dai DD, Lu CT, Chen LJ, Lin M, Shen XT, Li XK, Zhang M, Jiang X, Jin RR, Li X, Lv HF, Cai L, Huang PT (2013) Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer. Cancer Lett 330(1):74–83

    Article  CAS  PubMed  Google Scholar 

  27. Padhye SS, Guin S, Yao HP, Zhou YQ, Zhang R, Wang MH (2011) Sustained expression of the ron receptor tyrosine kinase by pancreatic cancer stem cells as a potential targeting moiety for antibody-directed chemotherapeutics. Mol Pharm 8(6):2310–2319

    Article  CAS  PubMed  Google Scholar 

  28. Kono K, Kojima C, Hayashi N, Nishisaka E, Kiura K, Watarai S, Harada A (2008) Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycin. Biomaterials 29(11):1664–1675

    Article  CAS  PubMed  Google Scholar 

  29. Han M, Lv Q, Tang XJ, Hu YL, Xu DH, Li FZ, Liang WQ, Gao JQ (2012) Overcoming drug resistance of mcf-7/adr cells by altering intracellular distribution of doxorubicin via mvp knockdown with a novel sirna polyamidoamine-hyaluronic acid complex. J Control Release 163(2):136–144

    Article  CAS  PubMed  Google Scholar 

  30. Dhanikula RS, Argaw A, Bouchard JF, Hildgen P (2008) Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 5(1):105–116

    Article  CAS  PubMed  Google Scholar 

  31. Najlah M, Freeman S, Attwood D, D’Emanuele A (2007) Synthesis and assessment of first-generation polyamidoamine dendrimer prodrugs to enhance the cellular permeability of p-gp substrates. Bioconjug Chem 18(3):937–946

    Article  CAS  PubMed  Google Scholar 

  32. Gurdag S, Khandare J, Stapels S, Matherly LH, Kannan RM (2006) Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem 17(2):275–283

    Article  CAS  PubMed  Google Scholar 

  33. Qiu L, Zheng C, Zhao Q (2012) Mechanisms of drug resistance reversal in dox-resistant mcf-7 cells by ph-responsive amphiphilic polyphosphazene containing diisopropylamino side groups. Mol Pharm 9(5):1109–1117

    CAS  PubMed  Google Scholar 

  34. Kunjachan S, Blauz A, Mockel D, Theek B, Kiessling F, Etrych T, Ulbrich K, van Bloois L, Storm G, Bartosz G, Rychlik B, Lammers T (2012) Overcoming cellular multidrug resistance using classical nanomedicine formulations. Eur J Pharm Sci 45(4):421–428

    Article  CAS  PubMed  Google Scholar 

  35. Yang YP, Chien Y, Chiou GY, Cherng JY, Wang ML, Lo WL, Chang YL, Huang PI, Chen YW, Shih YH, Chen MT, Chiou SH (2012) Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microrna145 with cationic polyurethane-short branch pei. Biomaterials 33(5):1462–1476

    Article  CAS  PubMed  Google Scholar 

  36. He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, Li Y, Shi J (2011) A ph-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 32(30):7711–7720

    Article  CAS  PubMed  Google Scholar 

  37. Huang IP, Sun SP, Cheng SH, Lee CH, Wu CY, Yang CS, Lo LW, Lai YK (2011) Enhanced chemotherapy of cancer using ph-sensitive mesoporous silica nanoparticles to antagonize p-glycoprotein-mediated drug resistance. Mol Cancer Ther 10(5):761–769

    Article  CAS  PubMed  Google Scholar 

  38. Shen J, He Q, Gao Y, Shi J, Li Y (2011) Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. Nanoscale 3(10):4314–4322

    Article  CAS  PubMed  Google Scholar 

  39. Lukianova-Hleb EY, Belyanin A, Kashinath S, Wu X, Lapotko DO (2012) Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 33(6):1821–1826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhang XG, Miao J, Dai YQ, Du YZ, Yuan H, Hu FQ (2008) Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int J Pharm 361(1–2):239–244

    Article  CAS  PubMed  Google Scholar 

  41. Min Y, Mao CQ, Chen S, Ma G, Wang J, Liu Y (2012) Combating the drug resistance of cisplatin using a platinum prodrug based delivery system. Angew Chem Int Ed Engl 51(27):6742–6747

    Article  CAS  PubMed  Google Scholar 

  42. Yang L, Meng L, Zhang X, Chen Y, Zhu G, Liu H, Xiong X, Sefah K, Tan W (2011) Engineering polymeric aptamers for selective cytotoxicity. J Am Chem Soc 133(34):13380–13386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Liu Y, Huang L, Liu F (2010) Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm 7(3):863–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lin YL, Liu YK, Tsai NM, Hsieh JH, Chen CH, Lin CM, Liao KW (2012) A lipo-peg-pei complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomedicine 8(3):318–327

    CAS  PubMed  Google Scholar 

  46. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  CAS  PubMed  Google Scholar 

  47. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3(3):319–328

    Article  CAS  PubMed  Google Scholar 

  48. Shapira A, Livney YD, Broxterman HJ, Assaraf YG (2011) Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 14(3):150–163

    Article  CAS  PubMed  Google Scholar 

  49. Wang CH, Chiou SH, Chou CP, Chen YC, Huang YJ, Peng CA (2011) Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with cd133 monoclonal antibody. Nanomedicine 7(1):69–79

    CAS  PubMed  Google Scholar 

  50. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, Miele L (2010) Targeting notch to target cancer stem cells. Clin Cancer Res 16(12):3141–3152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A, Fortelius LE, Landor S, Toivola DM, Linden M, Sahlgren C (2011) Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of notch signaling in cancer. Mol Ther 19(8):1538–1546

    Article  CAS  PubMed  Google Scholar 

  52. Deng YH, Pu XX, Huang MJ, Xiao J, Zhou JM, Lin TY, Lin EH (2010) 5-fluorouracil upregulates the activity of wnt signaling pathway in cd133-positive colon cancer stem-like cells. Chin J Cancer 29(9):810–815

    Article  CAS  PubMed  Google Scholar 

  53. Kim D, Lee ES, Oh KT, Gao ZG, Bae YH (2008) Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal ph. Small 4(11):2043–2050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sharma AK, Zhang L, Li S, Kelly DL, Alakhov VY, Batrakova EV, Kabanov AV (2008) Prevention of mdr development in leukemia cells by micelle-forming polymeric surfactant. J Control Release 131(3):220–227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Xu DH, Gao JQ, Liang WQ (2008) Liposome-based intracellular kinetics of doxorubicin in k562/dox cells. Pharmazie 63(9):646–649

    CAS  PubMed  Google Scholar 

  56. Li PY, Lai PS, Hung WC, Syu WJ (2010) Poly(l-lactide)-vitamin e tpgs nanoparticles enhanced the cytotoxicity of doxorubicin in drug-resistant mcf-7 breast cancer cells. Biomacromolecules 11(10):2576–2582

    Article  CAS  PubMed  Google Scholar 

  57. Shieh MJ, Hsu CY, Huang LY, Chen HY, Huang FH, Lai PS (2011) Reversal of doxorubicin-resistance by multifunctional nanoparticles in mcf-7/adr cells. J Control Release 152(3):418–425

    Article  CAS  PubMed  Google Scholar 

  58. Ryu SJ, An HJ, Oh YS, Choi HR, Ha MK, Park SC (2008) On the role of major vault protein in the resistance of senescent human diploid fibroblasts to apoptosis. Cell Death Differ 15(11):1673–1680

    Article  CAS  PubMed  Google Scholar 

  59. Durazo SA, Kompella UB (2012) Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 12(2):190–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X, Xu L, Qiu Y, Zhao K, Wei T, Li Y, Zhao Y, Chen C (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11(2):772–780

    Article  CAS  PubMed  Google Scholar 

  61. Weyland M, Manero F, Paillard A, Gree D, Viault G, Jarnet D, Menei P, Juin P, Chourpa I, Benoit JP, Gree R, Garcion E (2011) Mitochondrial targeting by use of lipid nanocapsules loaded with sv30, an analogue of the small-molecule bcl-2 inhibitor ha14-1. J Control Release 151(1):74–82

    Article  CAS  PubMed  Google Scholar 

  62. Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP (2012) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 33(18):4773–4782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Hu CM, Zhang L (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83(8):1104–1111

    Article  CAS  PubMed  Google Scholar 

  64. Misra R, Sahoo SK (2011) Coformulation of doxorubicin and curcumin in poly(d, l-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in k562 cells. Mol Pharm 8(3):852–866

    Article  CAS  PubMed  Google Scholar 

  65. Koganti S, Jagani HV, Palanimuthu VR, Mathew JA, Rao MC, Rao JV (2012) In vitro and in vivo evaluation of the efficacy of nanoformulation of sirna as an adjuvant to improve the anticancer potential of cisplatin. Exp Mol Pathol 94(1):137–147

    Article  PubMed  Google Scholar 

  66. Khdair A, Handa H, Mao G, Panyam J (2009) Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur J Pharm Biopharm 71(2):214–222

    Article  CAS  PubMed  Google Scholar 

  67. Patil YB, Sadhukha T, Ma L, Panyam J (2009) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136(1):21–29

    Article  CAS  PubMed  Google Scholar 

  68. Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J (2010) The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31(2):358–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Shen J, Yin Q, Chen L, Zhang Z, Li Y (2012) Co-delivery of paclitaxel and survivin shrna by pluronic p85-pei/tpgs complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 33(33):8613–8624

    Article  CAS  PubMed  Google Scholar 

  70. Das M, Sahoo SK (2012) Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance. PLoS One 7(3):e32920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Ma P, Dong X, Swadley CL, Gupte A, Leggas M, Ledebur HC, Mumper RJ (2009) Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol 5(2):151–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Yadav S, van Vlerken LE, Little SR, Amiji MM (2009) Evaluations of combination mdr-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother Pharmacol 63(4):711–722

    Article  CAS  PubMed  Google Scholar 

  73. Prasad P, Shuhendler A, Cai P, Rauth AM, Wu XY (2013) Doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles inhibit growth of sensitive and multidrug resistant human mammary tumor xenografts. Cancer Lett 334(2):263–273

    Google Scholar 

  74. Wang J, Yin C, Tang G, Lin X, Wu Q (2012) Glucose-functionalized multidrug-conjugating nanoparticles based on amphiphilic terpolymer with enhanced anti-tumorous cell cytotoxicity. Int J Pharm 441(1–2):291–298

    PubMed  Google Scholar 

  75. Devalapally H, Duan Z, Seiden MV, Amiji MM (2007) Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer 121(8):1830–1838

    Article  CAS  PubMed  Google Scholar 

  76. Devalapally H, Duan Z, Seiden MV, Amiji MM (2008) Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin Cancer Res 14(10):3193–3203

    Article  CAS  PubMed  Google Scholar 

  77. Song XR, Cai Z, Zheng Y, He G, Cui FY, Gong DQ, Hou SX, Xiong SJ, Lei XJ, Wei YQ (2009) Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in plga nanoparticles. Eur J Pharm Sci 37(3–4):300–305

    Article  CAS  PubMed  Google Scholar 

  78. Saad M, Garbuzenko OB, Minko T (2008) Co-delivery of sirna and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond) 3(6):761–776

    Article  CAS  Google Scholar 

  79. Li X, Lu WL, Liang GW, Ruan GR, Hong HY, Long C, Zhang YT, Liu Y, Wang JC, Zhang X, Zhang Q (2006) Effect of stealthy liposomal topotecan plus amlodipine on the multidrug-resistant leukaemia cells in vitro and xenograft in mice. Eur J Clin Invest 36(6):409–418

    Article  CAS  PubMed  Google Scholar 

  80. Liang GW, Lu WL, Wu JW, Zhao JH, Hong HY, Long C, Li T, Zhang YT, Zhang H, Wang JC, Zhang X, Zhang Q (2008) Enhanced therapeutic effects on the multi-drug resistant human leukemia cells in vitro and xenograft in mice using the stealthy liposomal vincristine plus quinacrine. Fundam Clin Pharmacol 22(4):429–437

    Article  CAS  PubMed  Google Scholar 

  81. Patel NR, Rathi A, Mongayt D, Torchilin VP (2011) Reversal of multidrug resistance by co-delivery of tariquidar (xr9576) and paclitaxel using long-circulating liposomes. Int J Pharm 416(1):296–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Wu J, Lu Y, Lee A, Pan X, Yang X, Zhao X, Lee RJ (2007) Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci 10(3):350–357

    CAS  PubMed  Google Scholar 

  83. Lu HL, Syu WJ, Nishiyama N, Kataoka K, Lai PS (2011) Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J Control Release 155(3):458–464

    Article  CAS  PubMed  Google Scholar 

  84. Wang J, Qu H, Jin L, Zeng W, Qin L, Zhang F, Wei X, Lu W, Zhang C, Liang W (2011) Pegylated phosphotidylethanolamine inhibiting p-glycoprotein expression and enhancing retention of doxorubicin in mcf7/adr cells. J Pharm Sci 100(6):2267–2277

    Article  CAS  PubMed  Google Scholar 

  85. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE (2010) Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and p-glycoprotein sirna to overcome drug resistance in a cancer cell line. ACS Nano 4(8):4539–4550

    Article  CAS  PubMed  Google Scholar 

  86. Taratula O, Garbuzenko OB, Chen AM, Minko T (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and sirna. J Drug Target 19(10):900–914

    Article  CAS  PubMed  Google Scholar 

  87. Xiao Y, Jaskula-Sztul R, Javadi A, Xu W, Eide J, Dammalapati A, Kunnimalaiyaan M, Chen H, Gong S (2012) Co-delivery of doxorubicin and sirna using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy. Nanoscale 4(22):7185–7193

    Article  CAS  PubMed  Google Scholar 

  88. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162

    Article  CAS  PubMed  Google Scholar 

  89. Soma CE, Dubernet C, Bentolila D, Benita S, Couvreur P (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin a in polyalkylcyanoacrylate nanoparticles. Biomaterials 21(1):1–7

    Article  CAS  PubMed  Google Scholar 

  90. van Vlerken LE, Duan Z, Seiden MV, Amiji MM (2007) Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 67(10):4843–4850

    Article  PubMed  Google Scholar 

  91. Gouaze V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC (2005) Glucosylceramide synthase blockade down-regulates p-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 65(9):3861–3867

    Article  CAS  PubMed  Google Scholar 

  92. Mo R, Sun Q, Xue J, Li N, Li W, Zhang C, Ping Q (2012) Multistage ph-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv Mater 24(27):3659–3665

    Article  CAS  PubMed  Google Scholar 

  93. Gaber MH (2002) Modulation of doxorubicin resistance in multidrug-resistance cells by targeted liposomes combined with hyperthermia. J Biochem Mol Biol Biophys 6(5):309–314

    Article  CAS  PubMed  Google Scholar 

  94. Rapoport N (2004) Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int J Pharm 277(1–2):155–162

    Article  CAS  PubMed  Google Scholar 

  95. Samia AC, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737

    Article  CAS  PubMed  Google Scholar 

  96. Reischl D, Zimmer A (2009) Drug delivery of sirna therapeutics: potentials and limits of nanosystems. Nanomedicine 5(1):8–20

    CAS  PubMed  Google Scholar 

  97. Nieth C, Priebsch A, Stege A, Lage H (2003) Modulation of the classical multidrug resistance (mdr) phenotype by rna interference (rnai). FEBS Lett 545(2–3):144–150

    Article  CAS  PubMed  Google Scholar 

  98. Xiong XB, Lavasanifar A (2011) Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of mdr-1 sirna and doxorubicin. ACS Nano 5(6):5202–5213

    Article  CAS  PubMed  Google Scholar 

  99. MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, Brahmbhatt VN, Phillips L, Pattison ST, Petti C, Stillman B, Graham RM, Brahmbhatt H (2009) Sequential treatment of drug-resistant tumors with targeted minicells containing sirna or a cytotoxic drug. Nat Biotechnol 27(7):643–651

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qing Gao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Han, M., Gao, JQ. (2013). Nanotherapeutics in Multidrug Resistance. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_15

Download citation

Publish with us

Policies and ethics