Skip to main content

Hemodynamic Monitoring in Critical Care

  • Reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

In the critically ill patient, hemodynamic monitoring is vital for determining a patient’s volume status and can assist a clinician in determining potential therapeutic options, including intravenous fluid resuscitation or a fluid challenge. Incorrect determination of volume status or an ill-advised fluid bolus can have grave consequences. Moreover, there are a number of clinical scenarios where volume status is difficult to determine. As such, a myriad of tools have been developed to assist a clinician in assessing volume status or responsiveness to a fluid challenge, with the ultimate objective of optimizing tissues oxygenation and organ perfusion.

Hemodynamic monitoring tools rely on the tenets of basic human cardiovascular physiology, which is characterized by the relationship between cardiac output, systemic vascular resistance, and mean arterial pressure. Because measuring stroke volume in real time is difficult, determining cardiac output (SV × heart rate) is the also elusive. Unfortunately for the clinician, cardiac output is also the most relevant to assessing volume status. Newer dynamic measures, which rely on real-time measurements of certain physiological parameters to calculate volume responsiveness, have replaced earlier static measures of volume status, including pulmonary artery occlusion pressure, central venous pressure, and left ventricular end-diastolic area. The static measurements are still widely used in many ICUs and can be determined via transduction of a pulmonary artery catheter or internal jugular or subclavian central venous catheter. The newer techniques rely on analysis of fluctuations in certain vital signs during respiratory variation (as in the case with pulse contour analysis and inferior vena cava diameter variation measurement) or direct measurement of blood volume or flow through the aorta (as in the case with pulmonary artery catheter thermodilution, transpulmonary thermodilution, thoracic electrical bioimpedance, and esophageal Doppler analysis), to determine cardiac output. Data on the benefit of one method of hemodynamic monitoring over another is largely mixed, and certain techniques may be more accurate or feasible in specific clinical scenarios.

Ultimately, sound clinical judgment, proper interpretation of measurements, and appropriate therapeutic responses to analyses are the most important aspects of hemodynamic monitoring. Other facets of critical care, such as surgical management, mechanical ventilation strategies, renal therapies, and nutrition, are all related to hemodynamics and are dictated, to some extent, by volume status. Within nutrition, whether to feed a hemodynamically unstable patient remains controversial, as has the use of immune modulating nutritional therapies in patients who are in various states of shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARDS:

Acute respiratory distress syndrome

CO:

Cardiac output

CVP:

Central venous pressure

ED:

Esophageal Doppler

IVCd:

Inferior vena cava diameter

LVEDA:

Left ventricular end-diastolic area

MAP:

Mean arterial pressure

PA:

Pulmonary artery

PCA:

Pulse contour analysis

PEEP:

Positive end-expiratory pressure

PLR:

Passive leg raise

POP:

Pulse oximetry plethysmographic waveform

PPV:

Pulse pressure variation

SPV:

Systolic pressure variation

SV:

Stroke volume

SVR:

Systemic vascular resistance

SVV:

Stroke volume variation

TD:

Thermodilution

TEB:

Thoracic electrical bioimpedance

TPTD:

Transpulmonary thermodilution

References

  • Allardet-Servent J, Forel JM, Roch A, et al. Pulmonary capillary blood flow and cardiac output measurement by partial carbon dioxide rebreathing in patients with acute respiratory distress syndrome receiving lung protective ventilation. Anesthesiology. 2009;111(5):1085–92. doi:10.1097/ALN.0b013e3181b8f676.

    Article  PubMed  Google Scholar 

  • Barbier C, Loubieres Y, Schmit C, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6. doi:10.1007/s00134-004-2259-8.

    PubMed  Google Scholar 

  • Beaulieu Y. Bedside echocardiography in the assessment of the critically ill. Crit Care Med. 2007;35(5 Suppl):S235–49. doi:10.1097/01.CCM.0000260673.66681.AF.

    Article  PubMed  Google Scholar 

  • Benington S, Ferris P, Nirmalan M. Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy. Eur J Anaesthesiol. 2009;26(11):893–905. doi:10.1097/EJA.0b013e3283308e50.

    Article  PubMed  Google Scholar 

  • Biais M, Vidil L, Sarrabay P, Cottenceau V, Revel P, Sztark F. Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device. Crit Care. 2009;13(6):R195. doi:10.1186/cc8195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Busse L, Davison DL, Junker C, Chawla LS. Hemodynamic monitoring in the critical care environment. Adv Chron Kidney Dis. 2013;20(1):21–9. doi:10.1053/j.ackd.2012.10.006.

    Article  Google Scholar 

  • Cannesson M, Musard H, Desebbe O, et al. The ability of stroke volume variations obtained with Vigileo/FloTrac system to monitor fluid responsiveness in mechanically ventilated patients. Anesth Analg. 2009;108(2):513–7. doi:10.1213/ane.0b013e318192a36b.

    Article  PubMed  Google Scholar 

  • Cariou A, Monchi M, Joly LM, et al. Noninvasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo-3000 system. Crit Care Med. 1998;26(12):2066–72.

    Article  CAS  PubMed  Google Scholar 

  • Chaney JC, Derdak S. Minimally invasive hemodynamic monitoring for the intensivist: current and emerging technology. Crit Care Med. 2002;30(10):2338–45. doi:10.1097/01.CCM.0000029186.57736.02.

    Article  PubMed  Google Scholar 

  • Connors Jr AF, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276(11):889–97.

    Article  PubMed  Google Scholar 

  • da Rocha EEM. Indirect calorimetry: methodology, instruments and clinical application. Curr Opin Clin Nutr Metab Care. 2006;9(3):247–56.

    Article  PubMed  Google Scholar 

  • Dahl MK, Vistisen ST, Koefoed-Nielsen J, Larsson A. Using an expiratory resistor, arterial pulse pressure variations predict fluid responsiveness during spontaneous breathing: an experimental porcine study. Crit Care. 2009;13(2):R39. doi:10.1186/cc7760.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;30(11):2060–6. doi:10.1007/s00134-004-2430-2.

    Article  PubMed  Google Scholar 

  • Davison D, Junker C. Advances in critical care for the nephrologist: hemodynamic monitoring and volume management. Clin J Am Soc Nephrol. 2008;3(2):554–61. doi:10.2215/CJN.01440307.

    Article  PubMed  Google Scholar 

  • de Waal EE, Rex S, Kruitwagen CL, Kalkman CJ, Buhre WF. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit Care Med. 2009a;37(2):510–5. doi:10.1097/CCM.0b013e3181958bf7.

    Article  PubMed  Google Scholar 

  • de Waal EE, Wappler F, Buhre WF. Cardiac output monitoring. Curr Opin Anaesthesiol. 2009b;22(1):71–7. doi:10.1097/ACO.0b013e32831f44d0.

    Article  PubMed  Google Scholar 

  • Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi:10.1007/s00134-012-2769-8.

    Article  CAS  PubMed  Google Scholar 

  • Dipti A, Soucy Z, Surana A, Chandra S. Role of inferior vena cava diameter in assessment of volume status: a meta-analysis. Am J Emerg Med. 2012;30(8):1414–1419.e1. doi:10.1016/j.ajem.2011.10.017.

    Article  PubMed  Google Scholar 

  • Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7. doi:10.1007/s00134-004-2233-5.

    Article  PubMed  Google Scholar 

  • Godje O, Hoke K, Goetz AE, et al. Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med. 2002;30(1):52–8.

    Article  PubMed  Google Scholar 

  • Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33(1):96–103. doi:10.1007/s00134-006-0404-2.

    Article  PubMed  Google Scholar 

  • Gujjar AR, Muralidhar K, Banakal S, Gupta R, Sathyaprabha TN, Jairaj PS. Non-invasive cardiac output by transthoracic electrical bioimpedence in post-cardiac surgery patients: comparison with thermodilution method. J Clin Monit Comput. 2008;22(3):175–80. doi:10.1007/s10877-008-9119-y.

    Article  PubMed  Google Scholar 

  • Gunn SR, Pinsky MR. Implications of arterial pressure variation in patients in the intensive care unit. Curr Opin Crit Care. 2001;7(3):212–7.

    Article  CAS  PubMed  Google Scholar 

  • Hadian M, Kim HK, Severyn DA, Pinsky MR. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care. 2010;14(6):R212. doi:10.1186/cc9335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey S, Young D, Brampton W, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2006;3(3):CD003408. doi:10.1002/14651858.CD003408.pub2.

    Google Scholar 

  • Haryadi DG, Orr JA, Kuck K, McJames S, Westenskow DR. Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput. 2000;16(5–6):361–74.

    Article  CAS  PubMed  Google Scholar 

  • Hofer CK, Senn A, Weibel L, Zollinger A. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit Care. 2008;12(3):R82. doi:10.1186/cc6933.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes CL. Vasoactive drugs in the intensive care unit. Curr Opin Crit Care. 2005;11(5):413–7.

    Article  PubMed  Google Scholar 

  • Jensen L, Yakimets J, Teo KK. A review of impedance cardiography. Heart Lung. 1995;24(3):183–93.

    Article  CAS  PubMed  Google Scholar 

  • Kay HR, Afshari M, Barash P, et al. Measurement of ejection fraction by thermal dilution techniques. J Surg Res. 1983;34(4):337–46.

    Article  CAS  PubMed  Google Scholar 

  • Koo KK, Sun JC, Zhou Q, et al. Pulmonary artery catheters: evolving rates and reasons for use. Crit Care Med. 2011;39(7):1613–8. doi:10.1097/CCM.0b013e318218a045.

    Article  PubMed  Google Scholar 

  • Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691–9.

    Article  PubMed  Google Scholar 

  • Lahner D, Kabon B, Marschalek C, et al. Evaluation of stroke volume variation obtained by arterial pulse contour analysis to predict fluid responsiveness intraoperatively. Br J Anaesth. 2009;103(3):346–51. doi:10.1093/bja/aep200.

    Article  CAS  PubMed  Google Scholar 

  • Laupland KB, Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. Can J Anaesth. 2002;49(4):393–401. doi:10.1007/BF03017329.

    Article  PubMed  Google Scholar 

  • Machare-Delgado E, Decaro M, Marik PE. Inferior vena cava variation compared to pulse contour analysis as predictors of fluid responsiveness: a prospective cohort study. J Intensive Care Med. 2011;26(2):116–24.

    Article  PubMed  Google Scholar 

  • Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M. Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med. 2007;33(7):1133–8. doi:10.1007/s00134-007-0642-y.

    Article  PubMed  Google Scholar 

  • Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8. doi:10.1378/chest. 07-2331.

    Article  PubMed  Google Scholar 

  • Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7. doi:10.1097/CCM.0b013e3181a590da.

    Article  PubMed  Google Scholar 

  • McClave SA, Martindale RG, Vanek VW, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009;33(3):277–316. doi:10.1177/0148607109335234.

    Article  PubMed  Google Scholar 

  • Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–28. quiz 449-5.

    Article  PubMed  Google Scholar 

  • Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–8.

    Article  PubMed  Google Scholar 

  • Moreno FL, Hagan AD, Holmen JR, Pryor TA, Strickland RD, Castle CH. Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am J Cardiol. 1984;53(4):579–85.

    Article  CAS  PubMed  Google Scholar 

  • Moretti R, Pizzi B. Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care. 2010;13(1):3–9. doi:10.1007/s12028-010-9356-z.

    Article  PubMed  Google Scholar 

  • Nakao S, Come PC, McKay RG, Ransil BJ. Effects of positional changes on inferior vena caval size and dynamics and correlations with right-sided cardiac pressure. Am J Cardiol. 1987;59(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  • Neviere R, Mathieu D, Riou Y, et al. Carbon dioxide rebreathing method of cardiac output measurement during acute respiratory failure in patients with chronic obstructive pulmonary disease. Crit Care Med. 1994;22(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  • Obritsch MD, Jung R, Fish DN, MacLaren R. Effects of continuous vasopressin infusion in patients with septic shock. Ann Pharmacother. 2004;38(7–8):1117–22. doi:10.1345/aph.1D513.

    Article  CAS  PubMed  Google Scholar 

  • Odenstedt H, Stenqvist O, Lundin S. Clinical evaluation of a partial CO2 rebreathing technique for cardiac output monitoring in critically ill patients. Acta Anaesthesiol Scand. 2002;46(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  • Petter H, Erik A, Bjorn E, Goran R. Measurement of cardiac output with non-invasive Aesculon impedance versus thermodilution. Clin Physiol Funct Imaging. 2011;31(1):39–47. doi:10.1111/j.1475-097X.2010.00977.x.

    Article  PubMed  Google Scholar 

  • Preau S, Saulnier F, Dewavrin F, Durocher A, Chagnon JL. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med. 2010;38(3):819–25. doi:10.1097/CCM.0b013e3181c8fe7a.

    Article  PubMed  Google Scholar 

  • Proulx F, Lemson J, Choker G, Tibby SM. Hemodynamic monitoring by transpulmonary thermodilution and pulse contour analysis in critically ill children. Pediatr Crit Care Med. 2011;12(4):459–66. doi:10.1097/PCC.0b013e3182070959.

    Article  PubMed  Google Scholar 

  • Reisner AT, Xu D, Ryan KL, Convertino VA, Rickards CA, Mukkamala R. Monitoring non-invasive cardiac output and stroke volume during experimental human hypovolaemia and resuscitation. Br J Anaesth. 2011;106(1):23–30. doi:10.1093/bja/aeq295.

    Article  CAS  PubMed  Google Scholar 

  • Sageman WS, Riffenburgh RH, Spiess BD. Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vasc Anesth. 2002;16(1):8–14.

    Article  PubMed  Google Scholar 

  • Sakka SG, Reinhart K, Wegscheider K, Meier-Hellmann A. Is the placement of a pulmonary artery catheter still justified solely for the measurement of cardiac output? J Cardiothorac Vasc Anesth. 2000;14(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  • Sandham JD, Hull RD, Brant RF, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348(1):5–14. doi:10.1056/NEJMoa021108.

    Article  PubMed  Google Scholar 

  • Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med. 2012;38(9):1429–37. doi:10.1007/s00134-012-2621-1.

    Article  PubMed  Google Scholar 

  • Schefold JC, Storm C, Bercker S, et al. Inferior vena cava diameter correlates with invasive hemodynamic measures in mechanically ventilated intensive care unit patients with sepsis. J Emerg Med. 2010;38(5):632–7. doi:10.1016/j.jemermed.2007.11.027.

    Article  PubMed  Google Scholar 

  • Segal E, Katzenelson R, Berkenstadt H, Perel A. Transpulmonary thermodilution cardiac output measurement using the axillary artery in critically ill patients. J Clin Anesth. 2002;14(3):210–3.

    Article  PubMed  Google Scholar 

  • Tachibana K, Imanaka H, Takeuchi M, Takauchi Y, Miyano H, Nishimura M. Noninvasive cardiac output measurement using partial carbon dioxide rebreathing is less accurate at settings of reduced minute ventilation and when spontaneous breathing is present. Anesthesiology. 2003;98(4):830–7.

    Article  PubMed  Google Scholar 

  • Tang WH, Tong W. Measuring impedance in congestive heart failure: current options and clinical applications. Am Heart J. 2009;157(3):402–11. doi:10.1016/j.ahj.2008.10.016.

    Article  PubMed  Google Scholar 

  • Teboul JL, Monnet X. Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care. 2008;14(3):334–9. doi:10.1097/MCC.0b013e3282fd6e1e.

    Article  PubMed  Google Scholar 

  • Urban P, Scheidegger D, Gabathuler J, Rutishauser W. Thermodilution determination of right ventricular volume and ejection fraction: a comparison with biplane angiography. Crit Care Med. 1987;15(7):652–5.

    Article  CAS  PubMed  Google Scholar 

  • Zaloga GP, Roberts PR, Marik P. Feeding the hemodynamically unstable patient: a critical evaluation of the evidence. Nutr Clin Pract. 2003;18(4):285–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Busse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Busse, L., Davison, D., Chawla, L., Jang, P. (2015). Hemodynamic Monitoring in Critical Care. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7836-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7836-2_36

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7837-9

  • Online ISBN: 978-1-4614-7836-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics