Skip to main content

MR Enhancing Implants

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

Implantation of cardiovascular implants such as stents, prosthetic heart valves or vena cava filters (VCF) are usually performed using X-ray-based imaging techniques (fluoroscopy) in a cath lab. Possible migration and intraluminal changes in the implants require a post interventional follow-up diagnostic procedure. For example, restenosis (up to 25 %) and late in-stent thrombosis (up to 2 % by in drug-eluting stents and despite dual anti-platelet therapy with aspirin and thienopyridine up to 6 % in diabetes patients) frequently occur after the implantation of a vascular stent. Vena cava filter is by nature subject of thrombus capturing. For explantation and retrieval, it must be assured that no large blood clot formations are still present in the filter. Prosthetic heart valves and the recently introduced balloon and self-expanding heart valves for transapical and TAVI procedure require follow-up imaging of possible complications such as paravalvular leakages, valve thrombosis or malfunction of the valve leaflets which are made of bovine pericardium or porcine heart valves. Therefore, post interventional non-invasive follow-up diagnostic is needed. Transthoracic ultrasound (TUS) is the method of choice for routine follow-up but due to the sound scattering at the valve scaffold, diagnosis is compromised. More thorough diagnosis can be achieved by invasive techniques such as transesophageal endoscopic ultrasound (TEE) or intravascular ultrasound (IVUS) reveals more information but still the sound scattering leaves gaps in the diagnoses of valve function. X-ray-based invasive imaging with iodinated contrast agents can be applied but the disadvantage of this diagnostic method is, additional to the ionising radiation, adverse reactions to iodinated contrast agents. This includes general (acute and delayed) and organ-specific adverse effects (contrast-induced nephrotoxicity and cardiovascular, pulmonary and neurotoxicity) and occurs, for example, in 17–35 % of patients with history of previous adverse reaction (some of the predisposing factors for an adverse reaction are: infants and elderly, history of asthma or allergy, dehydration and heart disease).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dangas G, Kuepper F. Restenosis: repeat narrowing of a coronary artery: prevention and treatment, circulation. Am Heart Assoc. 2002;105:2586–7.

    Google Scholar 

  2. Broad L, et al. Successful management of patients with a drug-eluting coronary stent presenting for elective, non-cardiac surgery. Br J Anaesth. 2007;98:19–22.

    Article  CAS  PubMed  Google Scholar 

  3. Namasivayam S, et al. Adverse reactions to intravenous iodinated contrast media. Curr Probl Diagn Radiol. 2006;35:164–9.

    Article  PubMed  Google Scholar 

  4. U-King-Im JK, Hollingworth W, Trivedi RA, et al. Contrast-enhanced MR angiography vs intra-arterial digital subtraction angiography for carotid imaging: activity-based cost analysis. Eur Radiol J. 2004;14:730–5.

    Google Scholar 

  5. Immel E, Melzer A. Improvement of the MR imaging behavior of vascular implants. Minim Invasive Ther. 2006;15(2):85–92.

    Article  Google Scholar 

  6. Melzer A, Michitsch S, Konak S, Schaefers G, et al. Nitinol in magnetic resonance imaging. Minim Invasive Ther Allied Technol. 2004;13:1–11.

    Article  Google Scholar 

  7. Luo Y, Li X, Li J, Wang X, Xu Y, Qiao Y, Hu D. Peripheral arterial disease, chronic kidney disease, and mortality: the Chinese ankle brachial index cohort study. Vasc Med. 2010;15:107–12.

    Article  PubMed  Google Scholar 

  8. Rudnick MR, Goldfarb S, Wexler L, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The iohexol cooperative study. Kidney Int. 1995;47:254.

    Article  CAS  PubMed  Google Scholar 

  9. Barrett BJ, Parfrey PS, Vavasour HM, et al. Contrast nephropathy in patients with impaired renal function: high versus low osmolar media. Kidney Int. 1992;41:1274.

    Article  CAS  PubMed  Google Scholar 

  10. Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320:143.

    Article  CAS  PubMed  Google Scholar 

  11. Schwab SJ, Hlatky MA, Pieper KS, et al. Contrast nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiographic contrast agent. N Engl J Med. 1989;320:149.

    Article  CAS  PubMed  Google Scholar 

  12. Lautin EM, Freeman NJ, Schoenfeld AH, et al. Radiocontrast-associated renal dysfunction: incidence and risk factors. AJR Am J Roentgenol. 1991;157:49–58.

    Article  CAS  PubMed  Google Scholar 

  13. Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86:649–52.

    Article  CAS  PubMed  Google Scholar 

  14. Weinrauch LA, Healy RW, Leland Jr OS, et al. Coronary angiography and acute renal failure in diabetic azotemic nephropathy. Ann Intern Med. 1977;86:56–62.

    Article  CAS  PubMed  Google Scholar 

  15. Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med. 1990;89:615–22.

    Article  CAS  PubMed  Google Scholar 

  16. McCullough PA, Wolyn R, Rocher LL, et al. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103:368.

    Article  CAS  PubMed  Google Scholar 

  17. Lakshminarayan R, Simpson JO, Ettles DF. Magnetic resonance angiography: current status in the planning and follow-up of endovascular treatment in lower-limb arterial disease. Cardiovasc Intervent Radiol. 2009;32:397–405.

    Article  PubMed  Google Scholar 

  18. Hirsch AT, et al. ACC/AHA guidelines for the management of patients with peripheral arterial disease; J Vasc Interv Radiol 2006;17:1383–98.

    Google Scholar 

  19. Melzer A, Busch M. Stent and MR imaging method for representing and determining the position of a stent. US Patent 6,280,385 B1; 2001.

    Google Scholar 

  20. Kivelitz D, Wagner S, Hansel J, Schnorr J, Wetzler R, Busch M, Melzer A. The active magnetic resonance imaging stent (AMRIS): initial experimental in vivo results with locally amplified MR angiography and flow measurements. Invest Radiol. 2001;36:625–31.

    Article  CAS  PubMed  Google Scholar 

  21. Kivelitz D, Wagner S, Schnorr J, Wetzler R, Busch M, Melzer A. A vascular stent as an active component for locally enhanced magnetic resonance imaging: initial in vivo imaging results after catheter-guided placement in rabbits. Invest Radiol. 2003;38:147–52.

    PubMed  Google Scholar 

  22. Quick HH, Kuehl H, Kaiser G, et al. Inductively coupled stent antennas in MRI. Magn Reson Med. 2002;48:781–90.

    Article  PubMed  Google Scholar 

  23. Millward SF, Grassi CJ, Kinney TB, Kundu S, Becker GJ, Cardella JF, Martin LG, Silberzweig JE, Sacks D. Technology assessment committee of the society of interventional radiology. Reporting standards for inferior vena cava filter placement and patient follow-up: supplement for temporary and retrievable/optional filters. J Vasc Interv Radiol. 2005;16:441–3.

    Article  PubMed  Google Scholar 

  24. Streiff MB. Vena caval filters: a review for intensive care specialists. J Intensive Care Med. 2003;18:59–79.

    Article  PubMed  Google Scholar 

  25. Hann CL, Streiff MB. The role of vena caval filters in the management of venous thromboembolism. Blood Rev. 2005;19:179–202.

    Article  PubMed  Google Scholar 

  26. Lorch H, Welger D, Wagner V, Hillner B, Strecker EP, Herrmann H, Voshage G, Zur C, Schwarzbach C, Schröder J, Gullotta U, Pleissner J, Huttner S, Siering U, Märcklin C, Chavan A, Gläser F, Apitzsch DE, Moubayed K, Leonhardi J, Schuchard UM, Weiss HD, Zwaan M. Current practice of temporary vena cava filter insertion: a multicenter registry. J Vasc Interv Radiol. 2000;11:83–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kim D, Edelman RR, Margolin CJ, Porter DH, McArdle CR, Schlam BW, Gianturco LE, Siegel JB, Simon M. The Simon nitinol filter: evaluation by MR and ultrasound. Angiology. 1992;43:541–8.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson SP, Raiken DP, Grebe PJ, Diffin DC, Leyendecker JR. Single institution prospective evaluation of the over-the-wire Greenfield vena caval filter. J Vasc Interv Radiol. 1998;9:766–73.

    Article  CAS  PubMed  Google Scholar 

  29. Grassi CJ, Matsumoto AH, Teitelbaum GP. Vena caval occlusion after Simon nitinol filter placement: identification with MR imaging in patients with malignancy. J Vasc Interv Radiol. 1992;3:535–9.

    Google Scholar 

  30. Spuentrup E, Buecker A, Katoh M, Wiethoff AJ, Parsons Jr EC, Botnar RM, Weisskoff RM, Graham PB, Manning WJ, Günther RW. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation. 2005;111:1377–82.

    Article  CAS  PubMed  Google Scholar 

  31. Bartels LW, Bos C, van Der Weide R, Smits HF, Bakker CJ, Viergever MA. Placement of an inferior vena cava filter in a pig guided by high-resolution MR fluoroscopy at 1.5 T. J Magn Reson Imaging. 2000;12:599–605.

    Article  CAS  PubMed  Google Scholar 

  32. Spritzer CE, Norconk JJ, Sostman HD, Coleman RE. Detection of deep venous thrombosis by magnetic resonance imaging. Chest. 1993;104:54–60.

    Article  CAS  PubMed  Google Scholar 

  33. Bücker A, Neuerburg JM, Adam GB, Glowinski A, Schaeffter T, Rasche V, van Vaals JJ, Günther RW. Real-time MR guidance for inferior vena cava filter placement in an animal model. J Vasc Interv Radiol. 2001;12:753–6.

    Article  PubMed  Google Scholar 

  34. Spuentrup E, Buecker A, Stuber M, Günther RW. MR-venography using high resolution true-FISP. Rofo. 2001;173:686–90.

    Article  CAS  PubMed  Google Scholar 

  35. Bartels LW, Bakker CJ, Viergever MA. Improved lumen visualization in metallic implants. Magn Reson Med. 2002;47:171–80.

    Article  PubMed  Google Scholar 

  36. Honda M, Obuchi M, Sugimoto H. Artefacts of vena cava filters ex vivo on MR angiography. Magn Reson Med Sci. 2003;2:71–7.

    Article  PubMed  Google Scholar 

  37. Kraemer NA, Immel E, Donker HC, Melzer A, Ocklenburg C, Guenther RW, Buecker A, Krombach GA, Spuentrup E. Evaluation of an active vena cava filter for MR imaging in a swine model. Radiology. 2011;258:446–54.

    Article  PubMed  Google Scholar 

  38. Owens CA, Bui JT, Knuttinen MG, Gaba RC, Carrillo TC, Hoefling N, Layden-Almer JE. Intracardiac migration of inferior vena cava filters: review of published data. Chest. 2009;36:877–8.

    Article  Google Scholar 

  39. Petersen SE, Voigtlander T, Kreitner KF, Kalden P, Wittlinger T, Scharhag J, Horstick G, Becker D, Hommel G, Thelen M, Meyer J. Quantification of shunt volumes in congenital heart diseases using a breath-hold MR phase contrast technique–comparison with oximetry. Int J Cardiovasc Imaging. 2002;18:53–60.

    Article  PubMed  Google Scholar 

  40. Mohrs OK, et al. Diagnosis of patent foramen ovale using contrast-enhanced dynamic MRI: a pilot study. Am J Roentgenol. 2005;184:234–40.

    Article  Google Scholar 

  41. Alsheikh-Ali AA, Thaler DE, Kent DM. Patent foramen ovale in cryptogenic stroke. Stroke. 2005;40:2349–55.

    Article  Google Scholar 

  42. Buecker A, Spuentrup E, Grabitz R, Freudenthal F, Muehler EG, Schaeffter T, van Vaals JJ, Günther RW. Magnetic resonance-guided placement of atrial septal closure device in animal model of patent foramen ovale. Circulation. 2002;106:511–5.

    Article  PubMed  Google Scholar 

  43. Kardon E. Prosthetic heart valves. emedicine.medscape. 2007;116: 1736–54.

    Google Scholar 

  44. Ghanbari H, et al. Percutaneous heart valve replacement. Trends Cardiovasc Med. 2006;18:117.

    Article  Google Scholar 

  45. Spillner J, Börgermann J, Reppenhagen G, et al. Endovascular aortic valve replacement, preliminary experience. Cardiovasc Eng. 2000;5:93–6.

    Google Scholar 

  46. Bonhoeffer P, Boudjemline Y, Saliba Z, et al. Transcatheter implantation of a bovine valve in pulmonary position. A lamb study. Circulation. 2000;102:813–6.

    Article  CAS  PubMed  Google Scholar 

  47. Cribier A, Eltchaninoff H, Tron C, et al. Early experience with percutaneous transcatheter implantation of heart valve prosthesis for the treatment of end-stage inoperable patients with calcific aortic stenosis. J Am Coll Cardiol. 2004;43:698–703.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The work has been supported by the Northern Research Partnership, Scottish Government SMART programme, BMBF Germany and the EU FP7 frame work Marie Curie programme, http://www.IIIOS.eu under grant agreement #238802

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Melzer MD, DDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melzer, A., Immel, E., Boyd, R., Wendt, D. (2014). MR Enhancing Implants. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_55

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics