Skip to main content

The Role of Autoimmunity in the Pathogenesis of Obliterative Bronchiolitis

  • Chapter
  • First Online:
Bronchiolitis Obliterans Syndrome in Lung Transplantation

Part of the book series: Respiratory Medicine ((RM,volume 8))

  • 927 Accesses

Abstract

Many risk factors and post-transplant events have been linked to the development of bronchiolitis obliterans syndrome. Evolving research suggests that the development of cell-mediated and humoral reactivity to self-antigens (collagen V, K-α1 tubulin) in the lung allograft may play a very significant role in the bronchiolar inflammation and fibrosis that lead to obliterative bronchiolitis and progressive graft dysfunction and loss. Alloimmune and autoimmune mechanisms likely work together to mediate chronic lung allograft rejection. This chapter examines the role of autoimmunity in bronchiolitis obliterans syndrome with a focus on the role of Th17 lymphocytes, IL-17, and immune regulatory mechanisms in the development and progression of obliterative bronchiolitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christie JD, Edwards LB, Aurora P, Dobbels F, Kirk R, Rahmel AO, et al. The registry of the International Society for Heart and Lung Transplantation: twenty-sixth official adult lung and heart-lung transplantation report-2009. J Heart Lung Transplant. 2009;28(10):1031–49.

    Article  PubMed  Google Scholar 

  2. Cooper JD, Billingham M, Egan T, Hertz MI, Higenbottam T, Lynch J, et al. A working formulation for the standardization of nomenclature and for clinical staging of chronic dysfunction in lung allografts. International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 1993;12(5):713–6.

    PubMed  CAS  Google Scholar 

  3. Estenne M, Maurer JR, Boehler A, Egan JJ, Frost A, Hertz M, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant. 2002;21(3):297–310.

    Article  PubMed  Google Scholar 

  4. Verleden GM, Vos R, De Vleeschauwer SI, Willems-Widyastuti A, Verleden SE, Dupont LJ, et al. Obliterative bronchiolitis following lung transplantation: from old to new concepts? Transpl Int. 2009;22(8):771–9.

    Article  PubMed  Google Scholar 

  5. Kinnier CV, Martinu T, Gowdy KM, Nugent JL, Kelly FL, Palmer SM. Innate immune activation by the viral PAMP poly I:C potentiates pulmonary graft-versus-host disease after allogeneic hematopoietic cell transplant. Transpl Immunol. 2011;24(2):83–93.

    Article  PubMed  CAS  Google Scholar 

  6. Todd JL, Palmer SM. Bronchiolitis obliterans syndrome: the final frontier for lung transplantation. Chest. 2011;140(2):502–8.

    Article  PubMed  Google Scholar 

  7. Opelz G, Susal C, Ruhenstroth A, Dohler B. Impact of HLA compatibility on lung transplant survival and evidence for an HLA restriction phenomenon: a collaborative transplant study report. Transplantation. 2010;90(8):912–7.

    Article  PubMed  CAS  Google Scholar 

  8. Nath DS, Basha HI, Mohanakumar T. Antihuman leukocyte antigen antibody-induced autoimmunity: role in chronic rejection. Curr Opin Organ Transplant. 2010;15(1):16–20.

    Article  PubMed  Google Scholar 

  9. Fukami N, Ramachandran S, Saini D, Walter M, Chapman W, Patterson GA, et al. Antibodies to MHC class I induce autoimmunity: role in the pathogenesis of chronic rejection. J Immunol. 2009;182(1):309–18.

    PubMed  CAS  Google Scholar 

  10. Hagedorn PH, Burton CM, Carlsen J, Steinbruchel D, Andersen CB, Sahar E, et al. Chronic rejection of a lung transplant is characterized by a profile of specific autoantibodies. Immunology. 2010;130(3):427–35.

    Article  PubMed  CAS  Google Scholar 

  11. Haque MA, Mizobuchi T, Yasufuku K, Fujisawa T, Brutkiewicz RR, Zheng Y, et al. Evidence for immune responses to a self-antigen in lung transplantation: role of type V collagen-specific T cells in the pathogenesis of lung allograft rejection. J Immunol. 2002;169(3):1542–9.

    PubMed  CAS  Google Scholar 

  12. Yoshida S, Haque A, Mizobuchi T, Iwata T, Chiyo M, Webb TJ, et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant. 2006;6(4):724–35.

    Article  PubMed  CAS  Google Scholar 

  13. Burlingham WJ, Love RB, Jankowska-Gan E, Haynes LD, Xu Q, Bobadilla JL, et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007;117(11):3498–506.

    Article  PubMed  CAS  Google Scholar 

  14. Bobadilla JL, Love RB, Jankowska-Gan E, Xu Q, Haynes LD, Braun RK, et al. TH-17, monokines, collagen type V, and primary graft dysfunction in lung transplantation. Am J Respir Crit Care Med. 2008;177:660–8.

    Article  PubMed  Google Scholar 

  15. Fischer A, du Bois R. Interstitial lung disease in connective tissue disorders. Lancet. 2012;380(9842):689–98.

    Article  PubMed  Google Scholar 

  16. Swigris JJ, Brown KK, Flaherty KR. The idiopathic interstitial pneumonias and connective tissue disease-associated interstitial lung disease. Curr Rheumatol Rev. 2010;6:91–8.

    Article  Google Scholar 

  17. Self SE. Autoantibody testing for autoimmune disease. Clin Chest Med. 2010;31(3):415–22.

    Article  PubMed  Google Scholar 

  18. Flaherty KR, Travis WD, Colby TV, Toews GB, Kazerooni EA, Gross BH, et al. Histopathologic variability in usual and nonspecific interstitial pneumonias. Am J Respir Crit Care Med. 2001;164(9):1722–7.

    Article  PubMed  CAS  Google Scholar 

  19. Feghali-Bostwick CA, Tsai CG, Valentine VG, Kantrow S, Stoner MW, Pilewski JM, et al. Cellular and humoral autoreactivity in idiopathic pulmonary fibrosis. J Immunol. 2007;179(4):2592–9.

    PubMed  CAS  Google Scholar 

  20. Kurosu K, Takiguchi Y, Okada O, Yumoto N, Sakao S, Tada Y, et al. Identification of annexin 1 as a novel autoantigen in acute exacerbation of idiopathic pulmonary fibrosis. J Immunol. 2008;181(1):756–67.

    PubMed  CAS  Google Scholar 

  21. Taille C, Grootenboer-Mignot S, Boursier C, Michel L, Debray MP, Fagart J, et al. Identification of periplakin as a new target for autoreactivity in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(6):759–66.

    Article  PubMed  CAS  Google Scholar 

  22. Gilani SR, Vuga LJ, Lindell KO, Gibson KF, Xue J, Kaminski N, et al. CD28 down-regulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis. PLoS One. 2010;5(1):e8959.

    Article  PubMed  CAS  Google Scholar 

  23. Kotsianidis I, Nakou E, Bouchliou I, Tzouvelekis A, Spanoudakis E, Steiropoulos P, et al. Global impairment of CD4+CD25+FOXP3+ regulatory T cells in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(12):1121–30.

    Article  PubMed  CAS  Google Scholar 

  24. Rinaldi M, Lehouck A, Heulens N, Lavend’homme R, Carlier V, Saint-Remy JM, et al. Antielastin B-cell and T-cell immunity in patients with chronic obstructive pulmonary disease. Thorax. 2012;67(8):694–700.

    Article  PubMed  Google Scholar 

  25. Liu M, Subramanian V, Christie C, Castro M, Mohanakumar T. Immune responses to self-antigens in asthma patients: clinical and immunopathological implications. Hum Immunol. 2012;73(5):511–6.

    Article  PubMed  CAS  Google Scholar 

  26. Nunez B, Sauleda J, Anto JM, Julia MR, Orozco M, Monso E, et al. Anti-tissue antibodies are related to lung function in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(8):1025–31.

    Article  PubMed  CAS  Google Scholar 

  27. Goffrini P. Sulla possibilita di conservazione e di utilizzazione del tessuto tracheale nella chirurgia riparatrice della trachea e dei grossi bronchi. [Possibility of serving and using tracheal tissue in surgical repair of the trachea and bronchi]. Minerva Chir. 1952;7(15):583–6.

    PubMed  CAS  Google Scholar 

  28. Depaulis J. Les plasties tracheobronchiques. [Tracheobronchial restorative surgery]. J Med Bord. 1952;129(4):291–5.

    PubMed  CAS  Google Scholar 

  29. Hertz MI, Jessurun J, King MB, Savik SK, Murray JJ. Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am J Pathol. 1993;142(6):1945–51.

    PubMed  CAS  Google Scholar 

  30. Nakanishi R, Shirakusa T, Hanagiri T. Early histopathologic features of tracheal allotransplant rejection: a study in nonimmunosuppressed dogs. Transplant Proc. 1994;26(6):3715–8.

    PubMed  CAS  Google Scholar 

  31. Nakanishi R, Shirakusa T, Mitsudomi T. Maximum length of tracheal autografts in dogs. J Thorac Cardiovasc Surg. 1993;106(6):1081–7.

    PubMed  CAS  Google Scholar 

  32. Xavier-Elsas P, Santos-Maximiano E, Queto T, Mendonca-Sales S, Joseph D, Gaspar-Elsas MI, et al. Ectopic lung transplantation induces the accumulation of eosinophil progenitors in the recipients’ lungs through an allergen- and interleukin-5-dependent mechanism. Clin Exp Allergy. 2007;37(1):29–38.

    Article  PubMed  CAS  Google Scholar 

  33. Ikonen T, Uusitalo M, Taskinen E, Korpela A, Salminen US, Morris RE, et al. Small airway obliteration in a new swine heterotopic lung and bronchial allograft model. J Heart Lung Transplant. 1998;17(10):945–53.

    PubMed  CAS  Google Scholar 

  34. Salminen US, Ikonen T, Uusitalo M, Taskinen E, Korpela A, Maasilta P, et al. Obliterative lesions in small airways in an immunosuppressed porcine heterotopic bronchial allograft model. Transpl Int. 1998;11 Suppl 1:S515–8.

    PubMed  Google Scholar 

  35. Ikonen TS, Brazelton TR, Berry GJ, Shorthouse RS, Morris RE. Epithelial re-growth is associated with inhibition of obliterative airway disease in orthotopic tracheal allografts in non-immunosuppressed rats. Transplantation. 2000;70(6):857–63.

    Article  PubMed  CAS  Google Scholar 

  36. Nakanishi R. Revascularization of trachea in lung and tracheal transplantation. Clin Transplant. 2007;21(5):668–74.

    Article  PubMed  Google Scholar 

  37. Nakanishi R. Cryopreservation of the tracheal grafts: review and perspective. Organogenesis. 2009;5(3):113–8.

    Article  PubMed  Google Scholar 

  38. Asimacopoulos PJ, Molokhia FA, Pegg CA, Norman JC. Lung transplantation in the rat. Transplant Proc. 1971;3(1):583–5.

    PubMed  CAS  Google Scholar 

  39. Marck KW, Prop J, Wildevuur CR, Nieuwenhuis P. Lung transplantation in the rat: histopathology of left lung iso- and allografts. J Heart Transplant. 1985;4(2):263–6.

    PubMed  CAS  Google Scholar 

  40. Marck KW, Wildevuur CR. Lung transplantation in the rat: I. Technique and survival. Ann Thorac Surg. 1982;34(1):74–80.

    Article  PubMed  CAS  Google Scholar 

  41. Mizuta T, Kawaguchi A, Nakahara K, Kawashima Y. Simplified rat lung transplantation using a cuff technique. J Thorac Cardiovasc Surg. 1989;97(4):578–81.

    PubMed  CAS  Google Scholar 

  42. Mizuta T, Nakahara K, Shirakura R, Fujii Y, Kawaguchi A, Minami M, et al. Total nonmicrosuture technique for rat lung transplantation. J Thorac Cardiovasc Surg. 1991;102(1):159–60.

    PubMed  CAS  Google Scholar 

  43. Zhai W, Ge J, Inci I, Hillinger S, Markus C, Korom S, et al. Simplified rat lung transplantation by using a modified cuff technique. J Invest Surg. 2008;21(1):33–7.

    Article  PubMed  Google Scholar 

  44. Okazaki M, Krupnick AS, Kornfeld CG, Lai JM, Ritter JH, Richardson SB, et al. A mouse model of orthotopic vascularized aerated lung transplantation. Am J Transplant. 2007;7(6):1672–9.

    Article  PubMed  CAS  Google Scholar 

  45. Jungraithmayr WM, Korom S, Hillinger S, Weder W. A mouse model of orthotopic, single-lung transplantation. J Thorac Cardiovasc Surg. 2009;137(2):486–91.

    Article  PubMed  Google Scholar 

  46. Jungraithmayr W, Weder W. The technique of orthotopic mouse lung transplantation as a movie-improved learning by visualization. Am J Transplant. 2012;12(6):1624–6.

    Article  PubMed  CAS  Google Scholar 

  47. Jungraithmayr W, Vogt P, Inci I, Hillinger S, Arni S, Korom S, et al. A model of chronic lung allograft rejection in the rat. Eur Respir J. 2010;35(6):1354–63.

    Article  PubMed  CAS  Google Scholar 

  48. Fan L, Benson HL, Vittal R, Mickler EA, Presson R, Fisher AJ, et al. Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am J Transplant. 2011;11(5):911–22.

    Article  PubMed  CAS  Google Scholar 

  49. De Vleeschauwer S, Jungraithmayr W, Wauters S, Willems S, Rinaldi M, Vaneylen A, et al. Chronic rejection pathology after orthotopic lung transplantation in mice: the development of a murine BOS model and its drawbacks. PLoS One. 2012;7(1):e29802.

    Article  PubMed  CAS  Google Scholar 

  50. Wilkes DS, Heidler KM, Bowen LK, Quinlan WM, Doyle NA, Cummings OW, et al. Allogeneic bronchoalveolar lavage cells induce the histology of acute lung allograft rejection, and deposition of IgG2a in recipient murine lungs. J Immunol. 1995;155(5):2775–83.

    PubMed  CAS  Google Scholar 

  51. Linsenmayer TF, Gibney E, Igoe F, Gordon MK, Fitch JM, Fessler LI, et al. Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol. 1993;121(5):1181–9.

    Article  PubMed  CAS  Google Scholar 

  52. Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE. Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem. 2004;279(51):53331–7.

    Article  PubMed  CAS  Google Scholar 

  53. Wilkes DS, Heidler KM, Yasufuku K, Devito-Haynes L, Jankowska-Gan E, Meyer KC, et al. Cell-mediated immunity to collagen V in lung transplant recipients: correlation with collagen V release into BAL fluid. J Heart Lung Transplant. 2001;20(2):167.

    Article  PubMed  Google Scholar 

  54. Trello CA, Williams DA, Keller CA, Crim C, Webster RO, Ohar JA. Increased gelatinolytic activity in bronchoalveolar lavage fluid in stable lung transplant recipients. Am J Respir Crit Care Med. 1997;156(6):1978–86.

    Article  PubMed  CAS  Google Scholar 

  55. Mares DC, Heidler KM, Smith GN, Cummings OW, Harris ER, Foresman B, et al. Type V collagen modulates alloantigen-induced pathology and immunology in the lung. Am J Respir Cell Mol Biol. 2000;23(1):62–70.

    Article  PubMed  CAS  Google Scholar 

  56. Yasufuku K, Heidler KM, O’Donnell PW, Smith Jr GN, Cummings OW, Foresman BH, et al. Oral tolerance induction by type V collagen downregulates lung allograft rejection. Am J Respir Cell Mol Biol. 2001;25(1):26–34.

    Article  PubMed  CAS  Google Scholar 

  57. Mizobuchi T, Yasufuku K, Zheng Y, Haque MA, Heidler KM, Woods K, et al. Differential expression of Smad7 transcripts identifies the CD4(+)CD45RC(high) regulatory T cells that mediate type V collagen-induced tolerance to lung allografts. J Immunol. 2003;171(3):1140–7.

    PubMed  CAS  Google Scholar 

  58. Braun RK, Molitor-Dart M, Wigfield C, Xiang Z, Fain SB, Jankowska-Gan E, et al. Transfer of tolerance to collagen type V suppresses Th-17 lymphocyte mediated acute lung transplant rejection. Transplantation. 2009;88(12):1341–8.

    Article  PubMed  CAS  Google Scholar 

  59. McGregor CG, Jamieson SW, Baldwin JC, Burke CM, Dawkins KD, Stinson EB, et al. Combined heart-lung transplantation for end-stage Eisenmenger’s syndrome. J Thorac Cardiovasc Surg. 1986;91(3):443–50.

    PubMed  CAS  Google Scholar 

  60. Tazelaar HD, Yousem SA. The pathology of combined heart-lung transplantation: an autopsy study. Hum Pathol. 1988;19(12):1403–16.

    Article  PubMed  CAS  Google Scholar 

  61. Ostrow D, Buskard N, Hill RS, Vickars L, Churg A. Bronchiolitis obliterans complicating bone marrow transplantation. Chest. 1985;87(6):828–30.

    Article  PubMed  CAS  Google Scholar 

  62. Tiriveedhi V, Sarma N, Mohanakumar T. An important role for autoimmunity in the immunopathogenesis of chronic allograft rejection. Int J Immunogenet. 2012;39(5):373–80.

    Article  PubMed  CAS  Google Scholar 

  63. Iwata T, Chiyo M, Yoshida S, Smith Jr GN, Mickler EA, Presson Jr R, et al. Lung transplant ischemia reperfusion injury: metalloprotease inhibition down-regulates exposure of type V collagen, growth-related oncogene-induced neutrophil chemotaxis, and tumor necrosis factor-alpha expression. Transplantation. 2008;85(3):417–26.

    PubMed  CAS  Google Scholar 

  64. Iwata T, Philipovskiy A, Fisher AJ, Presson Jr RG, Chiyo M, Lee J, et al. Anti-type V collagen humoral immunity in lung transplant primary graft dysfunction. J Immunol. 2008;181(8):5738–47.

    PubMed  CAS  Google Scholar 

  65. Benichou G, Alessandrini A, Charrad RS, Wilkes DS. Induction of autoimmunity after allotransplantation. Front Biosci. 2007;12:4362–9.

    Article  PubMed  CAS  Google Scholar 

  66. Goers TA, Ramachandran S, Aloush A, Trulock E, Patterson GA, Mohanakumar T. De novo production of K-alpha1 tubulin-specific antibodies: role in chronic lung allograft rejection. J Immunol. 2008;180(7):4487–94.

    PubMed  CAS  Google Scholar 

  67. Izutani H, Miyagawa S, Shirakura R, Matsumiya G, Nakata S, Shimazaki Y, et al. Evidence that graft coronary arteriosclerosis begins in the early phase after transplantation and progresses without chronic immunoreaction. Histopathological analysis using a retransplantation model. Transplantation. 1995;60(10):1073–9.

    Article  PubMed  CAS  Google Scholar 

  68. Bharat A, Fields RC, Steward N, Trulock EP, Patterson GA, Mohanakumar T. CD4+25+ regulatory T cells limit Th1-autoimmunity by inducing IL-10 producing T cells following human lung transplantation. Am J Transplant. 2006;6(8):1799–808.

    Article  PubMed  CAS  Google Scholar 

  69. Bharat A, Fields RC, Trulock EP, Patterson GA, Mohanakumar T. Induction of IL-10 suppressors in lung transplant patients by CD4+25+ regulatory T cells through CTLA-4 signaling. J Immunol. 2006;177(8):5631–8.

    PubMed  CAS  Google Scholar 

  70. Boehler A, Estenne M. Post-transplant bronchiolitis obliterans. Eur Respir J. 2003;22(6):1007–18.

    Article  PubMed  CAS  Google Scholar 

  71. Fossiez F, Banchereau J, Murray R, Van Kooten C, Garrone P, Lebecque S. Interleukin-17. Int Rev Immunol. 1998;16(5–6):541–51.

    Article  PubMed  CAS  Google Scholar 

  72. Linden A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol. 2001;126(3):179–84.

    Article  PubMed  CAS  Google Scholar 

  73. Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;188(12):6287–99.

    Article  PubMed  CAS  Google Scholar 

  74. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol. 1993;150(12):5445–56.

    PubMed  CAS  Google Scholar 

  75. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183(6):2593–603.

    Article  PubMed  CAS  Google Scholar 

  76. Pappu R, Ramirez-Carrozzi V, Ota N, Ouyang W, Hu Y. The IL-17 family cytokines in immunity and disease. J Clin Immunol. 2010;30(2):185–95.

    Article  PubMed  CAS  Google Scholar 

  77. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.

    Article  PubMed  CAS  Google Scholar 

  78. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41.

    Article  PubMed  CAS  Google Scholar 

  79. Pappu R, Ramirez-Carrozzi V, Sambandam A. The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases. Immunology. 2011;134(1):8–16.

    Article  PubMed  CAS  Google Scholar 

  80. Santamaria R, Rizzetto L, Bromley M, Zelante T, Lee W, Cavalieri D, et al. Systems biology of infectious diseases: a focus on fungal infections. Immunobiology. 2011;216(11):1212–27.

    Article  PubMed  CAS  Google Scholar 

  81. Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine. 2000;12(7):1092–9.

    Article  PubMed  CAS  Google Scholar 

  82. Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus. 2000;9(8):589–93.

    Article  PubMed  CAS  Google Scholar 

  83. Lubberts E, Joosten LA, Oppers B, van den Bersselaar L, Coenen-de Roo CJ, Kolls JK, et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol. 2001;167(2):1004–13.

    PubMed  CAS  Google Scholar 

  84. Dong G, Ye R, Shi W, Liu S, Wang T, Yang X, et al. IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients. Chin Med J (Engl). 2003;116(4):543–8.

    CAS  Google Scholar 

  85. Lubberts E. The role of IL-17 and family members in the pathogenesis of arthritis. Curr Opin Investig Drugs. 2003;4(5):572–7.

    PubMed  CAS  Google Scholar 

  86. Zhang GX, Gran B, Yu S, Li J, Siglienti I, Chen X, et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol. 2003;170(4):2153–60.

    PubMed  CAS  Google Scholar 

  87. McGeachy MJ, Anderton SM. Cytokines in the induction and resolution of experimental autoimmune encephalomyelitis. Cytokine. 2005;32(2):81–4.

    Article  PubMed  CAS  Google Scholar 

  88. Vanaudenaerde BM, Wuyts WA, Dupont LJ, Van Raemdonck DE, Demedts MM, Verleden GM. Interleukin-17 stimulates release of interleukin-8 by human airway smooth muscle cells in vitro: a potential role for interleukin-17 and airway smooth muscle cells in bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2003;22(11):1280–3.

    Article  PubMed  Google Scholar 

  89. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Article  PubMed  CAS  Google Scholar 

  90. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421(6924):744–8.

    Article  PubMed  CAS  Google Scholar 

  91. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al. Induction and molecular signature of pathogenic T(H)17 cells. Nat Immunol. 2012;13(10):991–9.

    Article  PubMed  CAS  Google Scholar 

  92. Wilke CM, Bishop K, Fox D, Zou W. Deciphering the role of Th17 cells in human disease. Trends Immunol. 2011;32(12):603–11.

    Article  PubMed  CAS  Google Scholar 

  93. Vanaudenaerde BM, Dupont LJ, Wuyts WA, Verbeken EK, Meyts I, Bullens DM, et al. The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J. 2006;27(4):779–87.

    Article  PubMed  CAS  Google Scholar 

  94. Carrodeguas L, Orosz CG, Waldman WJ, Sedmak DD, Adams PW, VanBuskirk AM. Trans vivo analysis of human delayed-type hypersensitivity reactivity. Hum Immunol. 1999;60(8):640–51.

    Article  PubMed  CAS  Google Scholar 

  95. VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, Chin T, Kusaka S, Geissler F, et al. Human allograft acceptance is associated with immune regulation. J Clin Invest. 2000;106(1):145–55.

    Article  PubMed  CAS  Google Scholar 

  96. Saini D, Weber J, Ramachandran S, Phelan D, Tiriveedhi V, Liu M, et al. Alloimmunity-induced autoimmunity as a potential mechanism in the pathogenesis of chronic rejection of human lung allografts. J Heart Lung Transplant. 2011;30(6):624–31.

    Article  PubMed  Google Scholar 

  97. Li W, Bribriesco AC, Nava RG, Brescia AA, Ibricevic A, Spahn JH, et al. Lung transplant acceptance is facilitated by early events in the graft and is associated with lymphoid neogenesis. Mucosal Immunol. 2012;5(5):544–54.

    Article  PubMed  CAS  Google Scholar 

  98. Guthrie KA, Gammill HS, Madeleine MM, Dugowson CE, Nelson JL. Parity and HLA alleles in risk of rheumatoid arthritis. Chimerism. 2011;2(1):11–5.

    Article  PubMed  Google Scholar 

  99. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9.

    Article  PubMed  CAS  Google Scholar 

  100. Ye ZJ, Zhou Q, Zhang JC, Li X, Wu C, Qin SM, et al. CD39+ regulatory T cells suppress generation and differentiation of Th17 cells in human malignant pleural effusion via a LAP-dependent mechanism. Respir Res. 2011;12:77.

    Article  PubMed  CAS  Google Scholar 

  101. Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’Farrelly C, et al. CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183(11):7602–10.

    Article  PubMed  CAS  Google Scholar 

  102. Yasufuku K, Heidler KM, Woods KA, Smith Jr GN, Cummings OW, Fujisawa T, et al. Prevention of bronchiolitis obliterans in rat lung allografts by type V collagen-induced oral tolerance. Transplantation. 2002;73(4):500–5.

    Article  PubMed  CAS  Google Scholar 

  103. Yamada Y, Sekine Y, Yoshida S, Yasufuku K, Petrache I, Benson HL, et al. Type V collagen-induced oral tolerance plus low-dose cyclosporine prevents rejection of MHC class I and II incompatible lung allografts. J Immunol. 2009;183(1):237–45.

    Article  PubMed  CAS  Google Scholar 

  104. Collison LW, Delgoffe GM, Guy CS, Vignali KM, Chaturvedi V, Fairweather D, et al. The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol. 2012;13(3):290–9.

    Article  PubMed  CAS  Google Scholar 

  105. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450(7169):566–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Burlingham Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Braun, R.K., Meyer, K.C., Burlingham, W.J. (2013). The Role of Autoimmunity in the Pathogenesis of Obliterative Bronchiolitis. In: Meyer, K., Glanville, A. (eds) Bronchiolitis Obliterans Syndrome in Lung Transplantation. Respiratory Medicine, vol 8. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7636-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7636-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7635-1

  • Online ISBN: 978-1-4614-7636-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics