Skip to main content

Marine Sediment Toxicity Identification Evaluations (TIEs): History, Principles, Methods, and Future Research

  • Chapter
  • First Online:
Contaminated Sediments

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5T))

Abstract

A common method for determining whether contaminants in sediments represent an environmental risk is to perform toxicity tests. Toxicity tests indicate whether contaminants in sediments are bioavailable and capable of causing adverse biological effects (e.g., mortality, reduced growth or reproduction) to aquatic organisms. Several environmental management and regulatory programs concerned with contaminated sediments use this approach for assessing risk. However, a limitation of the toxicity testing approach is that the results indicate only if toxicity is present in a given sediment sample. Toxicity test results do not provide information on the cause of toxicity; that is, what specific toxic chemicals are responsible for the effects observed. Information on the cause of the effect is important in performing risk assessments and determining remedial actions at contaminated sediment sites. Methods called Toxicity Identification Evaluation (TIE) procedures were originally developed for industrial and municipal effluents to determine the causes of toxicity in waters affected by these discharges. The TIE approach combines toxicity testing with simple chemical manipulations to selectively alter the toxicity of specific classes of toxicants in a sample. These aqueous TIE methods were later adapted for use with contaminated sediment interstitial waters. Now, whole sediment TIE methods have been developed for both freshwater and marine sediments. This chapter will focus on the development of TIE methods for marine contaminated sediments. Like the aqueous-based TIE methods, the whole sediment TIE methods combine toxicity testing with chemical manipulations to selectively alter the toxicity of potential classes of sediment contaminants. By selectively altering the toxicity of potential classes of toxicants followed by comparison to the toxicity of an unmanipulated sample, it is possible to characterize and identify the causes of sediment toxicity. Currently, interstitial water and whole sediment TIE methods are designed to detect toxicity caused by cationic and anionic metals, nonionic organic compounds, and ammonia, although methods for other toxicants including hydrogen sulfide and specific pesticides are under development. This chapter will provide an overview of the TIE approach and methods for both marine interstitial waters and whole sediments. The chapter will conclude with a brief discussion of new applications for sediment TIEs as well as research needs for the continued development of sediment TIE methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baudo R, Giesy J, Muntau H (eds) (1990) Sediments: chemistry and toxicity of in-place pollutants. Lewis Publishers, Chelsea, MI

    Google Scholar 

  2. Daskalakis KD, O'Connor TP (1995) Mar Environ Res 40:381

    Article  CAS  Google Scholar 

  3. O'Connor TP (1991) Environ Health Perspect 90:69

    Article  Google Scholar 

  4. Liu M, Hou IJ, Yang Y, Zou HX, Lu JH, Wang XR (2001) Environ Geol 41:90

    Article  CAS  Google Scholar 

  5. O'Connor TP, Lauenstein GG (2006) Mar Environ Res 62:261

    Article  CAS  Google Scholar 

  6. Stronkhorst J, Schipper C, Brils J, Dubbeldam M, Postma J, van de Hoeven N (2003) Envion Toxicol Chem 22:1535

    Article  CAS  Google Scholar 

  7. Long ER, Robertson A, Wolfe DA, Hameedi J, Sloane GM (1996) Environ Sci Technol 30:3585

    Article  CAS  Google Scholar 

  8. US Environmental Protection Agency, The incidence and severity of sediment contamination in surface waters of the United States, National Sediment Quality Survey: Second edition (2004) Technical Report EPA-823-R-04-007 Office of Science and Technology

    Google Scholar 

  9. Chapman PM (1988) In: Lichtenberg JL, Winter JA, Weber CI, Fradkin L (eds) Chemical and biological characterization of municipal sludges, sediments, dredge spoils and drilling muds. Am Soc Test Mater STP, Philadelphia, vol 976, pp 391–402

    Google Scholar 

  10. Doe KG, Burton AG, Ho KT (2003) In: Carr RS, Nipper M (eds) Porewater toxicity testing: biological, chemical and ecological considerations. Soc Environ Toxicol Chem (SETAC), pp 125–141

    Google Scholar 

  11. ASTM (2001) Annual Book of ASTM Standards. Section 11 Water and Environmental Technology E 1562-00,. Biological Effects and Environmental Fate; Biotechnology; Pesticides: Standard guide for conducting acute, chronic and life-cycle aquatic toxicity tests with polychaetous annelids. Am Soc Test Mater, West Conshohocken PA, vol. Section 11.05

    Google Scholar 

  12. Samoiloff MR (1989) In: Nriagu JO, Lakshminarayana JSS (eds) Aquatic Toxicology and Water Quality Management. Wiley, New York, vol 22, pp 143–152

    Google Scholar 

  13. Swartz RC (1987) In: Dickson KL, Maki AW, Brung WA (eds) Fate and Effects of Sediment Bound Chemicals in Aquatic Systems. Pergamon Press, New York

    Google Scholar 

  14. Burton GAJ, Denton D, Ho KT, Ireland S (2003) In: Hoffman D, Rattner D, Burton GAJ, Cairns JJ (eds) Handbook of Ecotoxicology. CRC Press, Lewis Publishers, Boca Raton, FL

    Google Scholar 

  15. Kuhn A, Munns WRJ, Poucher S, Champlain D, Lussier S (2000) Environ Toxicol Chem 19:2364

    Article  CAS  Google Scholar 

  16. Kuhn A, Munns WRJ, Serbst J, Edwards P, Cantwell MG, Gleason T, Pelletier MC, Berry W (2002) Environ Toxicol Chem 21:865

    Article  CAS  Google Scholar 

  17. Bailey RC, Day KE, Norris RH, Reynoldson TB (1995) J Great Lakes Res 21:42

    Article  Google Scholar 

  18. Hyland JL, Dolah RFV, Snoots TR (1999) Environ Toxicol Chem 18:2557

    Article  CAS  Google Scholar 

  19. US Environmental Protection Agency, Methods for aquatic toxicity identification evaluations: Phase II toxicity identification procedures. (1989) Final Report EPA/600-3-88/035 US Environmental Protection Agency, Duluth, MN

    Google Scholar 

  20. US Environmental Protection Agency, Methods for Aquatic Toxicity Identification Evaluations:Phase I Toxicity Characterization Procedures (Second Edition) (1991) Final Report EPA-600/6-91/003 US Environmental Protection Agency, Duluth, MN

    Google Scholar 

  21. US Environmental Protection Agency, Methods for aquatic toxicity identification evaluations: Phase III toxicity confirmation procedures for samples exhibiting acute and chronic toxicity. (1993a) Final Report EPA/600/R-92/081 US Environmental Protection Agency, Duluth, MN

    Google Scholar 

  22. US Environmental Protection Agency, Marine toxicity identification evaluation (TIE) procedures manual: Phase I Guidance Document (1996) EPA 600/R-96/054 USEPA/ Office of Research and Development, Washington, DC

    Google Scholar 

  23. Burgess RM (2000) Int J Environ Poll 13:2

    Article  CAS  Google Scholar 

  24. US Environmental Protection Agency, Sediment Toxicity Identification Evaluation (TIE) Phases I, II, and III Guidance Document (2007) Final EPA/600/R-07/080 Office of Research and Development

    Google Scholar 

  25. Gupta G, Karuppiah M (1996a) Chemosphere 33:939

    Article  CAS  Google Scholar 

  26. Ho KT, Burgess RM, Pelletier MC, Serbst JR, Ryba SA, Cantwell MG, Kuhn A, Raczelowski P (2002) Mar Poll Bull 44:286

    Article  CAS  Google Scholar 

  27. Ho KT, McKinney RA, Kuhn A, Pelletier MC, Burgess RM (1997) Environ Toxicol Chem 16:551

    Article  CAS  Google Scholar 

  28. Schubauer-Berigan MK, Amato JR, Ankley GT, Baker SE, Burkhard LP, Dierkes JR, Jenson JJ, Lukasewycz MT, Norberg-King TJ (1993) Arch Environ Contam Toxicol 24:298

    Article  CAS  Google Scholar 

  29. Boucher AM, Watzin MC (1999) Environ Toxicol Chem 18:509

    Article  CAS  Google Scholar 

  30. Carr RS, Nipper M, Biedenbach JM, Hooten RL, Miller K, Saepoff S (2001/10, 2001) Arch Environ Contam Toxicol 41:298

    Google Scholar 

  31. Ankley G, Schubauer-Berigan M, Dierkes J, Lukasewycz M (1992) Sediment toxicity identification evaluation: Phase I (characterization), Phase II (identification) and Phase III (confirmation) modifications of effluent procedures. Draft-technical report. EPA 08-91 US Environmental Protection Agency/Environmental Research Laboratory-Duluth, MN

    Google Scholar 

  32. Adams W, Burgess RM, Gold-Bouchot G, LeBlanc L, Liber K, Williamson B (2001) Porewater chemistry: effects of sampling, storage, handling and toxicity testing. In: Summary of a SETAC technical workshop: Porewater toxicity testing: biological, chemical and ecological considerations with a review of methods and applications, and recommendations for future areas of research. 18–22 March 2000; Pensacola, FL, Carr RS, M Nipper, Eds. Society of Environmental Toxicology and Chemistry (SETAC). Pensacola, FL

    Google Scholar 

  33. US Environmental Protection Agency, US Army Corp Of Engineers, Evaluation of dredged material proposed for discharge in waters of the US- Testing Manual (Draft) (1994) Final Report EPA-823-B-94-002 Office of Water-US Environmental Protection Agency US Army Corp of Engineers, Dept. of the Army

    Google Scholar 

  34. Burgess RM, Pelletier MC, Ho KT, Serbst JR, Ryba SA, Kuhn A, Perron MM, Raczelowski P, Cantwell MG (2003) Mar Poll Bull 46:607

    Article  CAS  Google Scholar 

  35. Ho KT, Burgess RM, Pelletier MC, Serbst JR, Cook H, Cantwell MG, Ryba SA, Perron MM, Lebo JA, Huckins JN, Petty JD (2004) Environ Toxicol Chem 23:2124

    Article  CAS  Google Scholar 

  36. Pelletier M, Ho KT, Cantwell MG, Kuhn-Hines A, Jayaraman S, Burgess RM (2001) Environ Toxicol Chem 20:2852

    Article  CAS  Google Scholar 

  37. Besser JM, Ingersoll CG, Leonard EN, Mount DR (1998) Environ Toxicol Chem 17:2310

    Article  CAS  Google Scholar 

  38. Kosian PA, West CW, Pasha MS, Cox JS, Mount DR, Huggett RJ, Ankley GT (1999) Environ Toxicol Chem 18:201

    Article  CAS  Google Scholar 

  39. Leonard EN, Mount DR, Ankley GT (1999) Environ Toxicol Chem 18:858

    Article  CAS  Google Scholar 

  40. Anderson B, Hunt J, Phillips B, Tjeerdema R (2006) Navigating the TMDL Process: Sediment Toxicity. Final Report 02-WSM-2. Water Environment Research Foundation

    Google Scholar 

  41. Heinis LJ, Highland TL, Mount DR (2004) Environ Sci Technol 38:6256

    Article  CAS  Google Scholar 

  42. Burgess RM, Perron MM, Cantwell MG, Ho KT, Serbst JR, Pelletier MC (2004) Arch Environ Contam Toxicol 47:440

    Google Scholar 

  43. Pruell RJ, Norwood CN, Bowen RD, Boothman WS, Rogerson PF, Hackett M, Butterworth BC (1990) Mar Environ Res 29:77

    Article  CAS  Google Scholar 

  44. Lebo JA, Huckins JN, Petty JD, Cranor WL, Ho KT (2003) Chemosphere 50:1309

    Article  CAS  Google Scholar 

  45. Valette-Silver NJ (1993) Estuaries 16:577

    Article  CAS  Google Scholar 

  46. Hansen DJ, Berry WJ, Mahony JD, Boothman WS, Di Toro DM, Robson DL, Ankley GT, Ma D, Yan Q, Pesch CE (1996) Environ Toxicol Chem 15:2080

    Article  CAS  Google Scholar 

  47. Burgess RM, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Cook HF, Kuhn A (2000) Environ Toxicol Chem 19:982

    Article  CAS  Google Scholar 

  48. Parsons TR, Takahashi M, Hargrave B (1984) Biological Oceanographic Processes. Pergamon Press, New York

    Google Scholar 

  49. Millero FJ, Sohn NL (1992) Chemical Oceanography. CRC Press, Boca Raton

    Google Scholar 

  50. Ho K, Caudle D (1997) Environ Toxicol Chem 16:1993

    Article  CAS  Google Scholar 

  51. Miller DC, Poucher S, Cardin JA, Hansen D (1990) Arch Environ Contam Toxicol 19:40

    Google Scholar 

  52. Ho KT, Kuhn A, Pelletier MC, Burgess RM, Helmstetter A (1999) Environ Toxicol Chem 18:207

    Article  CAS  Google Scholar 

  53. Neori A, Cohen I, Gordin H (1991) Botanica Marina 34:483

    Google Scholar 

  54. Cohen I, Neori A (1991) Botanica Marina 34:475

    Article  Google Scholar 

  55. Kesraoui-Ouki S, CR C, Perry R (1994) J Chem Techn Biotech 59:121

    Article  CAS  Google Scholar 

  56. Rozic M, Cerjan-Stefanovic S, Kurajica S, Vancina V, Hodzic E (2000) Water Res 34:3675

    Article  CAS  Google Scholar 

  57. Sunda WG, Engel DW, Thuotte RM (1978) Environ Sci Technol 12:409

    Article  CAS  Google Scholar 

  58. Garvan FL (1964) In: Dwyer FP, Mellor DPe (eds) Chelating agents and metal chelates. Academic Press, New York

    Google Scholar 

  59. Burgess RM, Charles JB, Kuhn A, Ho KT, Patton LE, McGovern DG (1997) Environ Toxicol Chem 16:1203

    Article  CAS  Google Scholar 

  60. Schubauer-Berigan MK, Dierkes JR, Monson PD, Ankley GT (1993) Environ Toxicol Chem 12:1261

    Article  CAS  Google Scholar 

  61. Ho KT, Kuhn A, Pelletier MC, Hendricks TL, Helmstetter A (1999) Environ Toxicol 14:235

    Article  CAS  Google Scholar 

  62. Russo RC (1985) in Fundamentals of Aquatic Toxicology, Rand GM, SR Petrocelli, Eds. Hemisphere Publishing Corporation NY, pp 455–471

    Google Scholar 

  63. National Academy of Science, National Academy of Engineering, Water Quality Criteria – 1972 (1974) US Government Printing Office

    Google Scholar 

  64. Bagarinao T (1992) Aquat Toxicol 24:21

    Article  CAS  Google Scholar 

  65. US Environmental Protection Agency, Stressor Identification Guidance Document (2000) EPA 822-B-00-025 Office of Water, Office of Research and Development

    Google Scholar 

  66. US Environmental Protection Agency, Conceptual Models and Methods to Guide Diagnostic Research (2006) Final EPA 600/R-06/024 United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic, Gulf, and Mid-Continent Ecology Divisions

    Google Scholar 

  67. Safe SH (1998) Environ Health Perspect 106:1051

    Article  CAS  Google Scholar 

  68. Nacci D, Coiro L, Kunh A, Champlin D, MW Jr, Specker JL, Cooper K (1998) Environ Toxicol Chem 17:2481

    Article  CAS  Google Scholar 

  69. Klamer HJC, Villerius LA, Roelsma J, De Maagd PGJ, Opperhuizen A, (1997) Environ Toxicol Chem 16:857

    Article  CAS  Google Scholar 

  70. Bodek I, Reehl WJ, Rosenblatt DH (1988) Environmental Inorganic Chemistry. Pergamon Press, New York

    Google Scholar 

  71. Burgess RM, Perron MM, Cantwell MG, Ho KT, Pelletier MC, Serbst JR, Ryba SA (2007) Environ Toxicol Chem 26:61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay T. Ho .

Editor information

Tarek A. Kassim Damià Barceló

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ho, K.T., Burgess, R.M. (2008). Marine Sediment Toxicity Identification Evaluations (TIEs): History, Principles, Methods, and Future Research. In: Kassim, T.A., Barceló, D. (eds) Contaminated Sediments. The Handbook of Environmental Chemistry, vol 5T. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_5_108

Download citation

Publish with us

Policies and ethics