Skip to main content

Antibody-Mediated Receptor Endocytosis: Harnessing the Cellular Machinery to Combat Cancer

  • Chapter
  • First Online:
Vesicle Trafficking in Cancer

Abstract

Monoclonal antibodies targeting specific surface antigens of cancer cells are rapidly becoming the main stay drugs in specific diseases, such as lymphoma and breast cancer. Therapeutic antibodies almost invariably induce endocytosis of their antigens, and this attribute is already harnessed as a strategy to deliver cytotoxic payloads into cancer cells. The therapeutic potential, however, extends to direct antitumor activity of naked (unconjugated) antibodies, but the contribution of antibody-induced endocytosis to antitumor effects is variable and remains largely unclear. Interestingly, mixtures of monoclonal antibodies, each engaging a distinct epitope of the same antigen, synergistically induce receptor degradation and correspondingly collaborate in tumor inhibition. Here we describe several examples of therapeutic and experimental antibodies, with an emphasis on growth factor receptors and the possibility that future immunotherapy will employ specific antibody combinations, which robustly strip tumors of their most essential receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  2. Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI (1985) Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41:697–706

    Article  CAS  PubMed  Google Scholar 

  3. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM et al (1989) p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9:1165–1172

    CAS  PubMed  Google Scholar 

  4. Boulianne GL, Hozumi N, Shulman MJ (1984) Production of functional chimaeric mouse/human antibody. Nature 312:643–646

    Article  CAS  PubMed  Google Scholar 

  5. Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  CAS  PubMed  Google Scholar 

  6. Fishwild DM, O’Donnell SL, Bengoechea T, Hudson DV, Harding F et al (1996) High-­avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14:845–851

    Article  CAS  PubMed  Google Scholar 

  7. Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE et al (1997) Functional transplant of megabase human immunoglobulin loc. recapitulates human antibody response in mice. Nat Genet 15:146–156

    Article  CAS  PubMed  Google Scholar 

  8. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Kasus T, Schechter B, Sela M, Yarden Y (2007) Cancer therapeutic antibodies come of age: targeting minimal residual disease. Mol Oncol 1:42–54

    Article  CAS  PubMed  Google Scholar 

  10. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10:317–327

    Article  CAS  PubMed  Google Scholar 

  11. Iannello A, Ahmad A (2005) Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 24:487–499

    Article  CAS  PubMed  Google Scholar 

  12. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6:443–446

    Article  CAS  PubMed  Google Scholar 

  13. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758

    Article  CAS  PubMed  Google Scholar 

  14. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M et al (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26:1789–1796

    Article  CAS  PubMed  Google Scholar 

  15. Olivieri A, Lucesole M, Capelli D, Gini G, Montanari M et al (2005) A new schedule of CHOP/rituximab plus granulocyte-macrophage colony-stimulating factor is an effective rescue for patients with aggressive lymphoma failing autologous stem cell transplantation. Biol Blood Marrow Transplant 11:627–636

    Article  CAS  PubMed  Google Scholar 

  16. Lundin J, Kimby E, Bjorkholm M, Broliden PA, Celsing F et al (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100:768–773

    Article  CAS  PubMed  Google Scholar 

  17. Pawluczkowycz AW, Beurskens FJ, Beum PV, Lindorfer MA, van de Winkel JG et al (2009) Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol 183:749–758

    Article  CAS  PubMed  Google Scholar 

  18. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587

    PubMed  Google Scholar 

  19. Racila E, Link BK, Weng WK, Witzig TE, Ansell S et al (2008) A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res 14:6697–6703

    Article  CAS  PubMed  Google Scholar 

  20. Cragg MS, Glennie MJ (2004) Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103:2738–2743

    Article  CAS  PubMed  Google Scholar 

  21. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  CAS  PubMed  Google Scholar 

  22. Xia W, Liu LH, Ho P, Spector NL (2004) Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW572016. Oncogene 23:646–653

    Article  CAS  PubMed  Google Scholar 

  23. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J et al (2001) Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61:4744–4749

    CAS  PubMed  Google Scholar 

  24. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD et al (2009) Ligand-­independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15:429–440

    Article  CAS  PubMed  Google Scholar 

  25. Bubien JK, Zhou LJ, Bell PD, Frizzell RA, Tedder TF (1993) Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol 121:1121–1132

    Article  CAS  PubMed  Google Scholar 

  26. Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH et al (2001) Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-­inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res 61:4892–4900

    CAS  PubMed  Google Scholar 

  27. Hudziak RM, Lewis GD, Shalaby MR, Eessalu TE, Aggarwal BB et al (1988) Amplified expression of the HER2/ERBB2 oncogene induces resistance to tumor necrosis factor alpha in NIH 3T3 cells. Proc Natl Acad Sci USA85:5102–5106

    Article  CAS  PubMed  Google Scholar 

  28. Huang SM, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59:1935–1940

    CAS  PubMed  Google Scholar 

  29. Bezombes C, Grazide S, Garret C, Fabre C, Quillet-Mary A et al (2004) Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains. Blood 104:1166–1173

    Article  CAS  PubMed  Google Scholar 

  30. Peng D, Fan Z, Lu Y, DeBlasio T, Scher H et al (1996) Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res 56:3666–3669

    CAS  PubMed  Google Scholar 

  31. Lane HA, Motoyama AB, Beuvink I, Hynes NE (2001) Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling. Ann Oncol 12(suppl 1):S21–S22

    Article  PubMed  Google Scholar 

  32. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  CAS  PubMed  Google Scholar 

  33. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416:279–280

    Article  CAS  PubMed  Google Scholar 

  34. Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N et al (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151:1523–1530

    CAS  PubMed  Google Scholar 

  35. Zwang Y, Yarden Y (2009) Systems biology of growth factor-induced receptor endocytosis. Traffic 10:349–363

    Article  CAS  PubMed  Google Scholar 

  36. Platta HW, Stenmark H (2011) Endocytosis and signaling. Curr Opin Cell Biol 23:393–403

    Article  CAS  PubMed  Google Scholar 

  37. Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622

    Article  CAS  PubMed  Google Scholar 

  38. Goldstein JL, Anderson RG, Brown MS (1979) Coated pits, coated vesicles, and receptor-­mediated endocytosis. Nature 279:679–685

    Article  CAS  PubMed  Google Scholar 

  39. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  CAS  PubMed  Google Scholar 

  40. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  CAS  PubMed  Google Scholar 

  41. Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A et al (2001) Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 7:661–671

    Article  CAS  PubMed  Google Scholar 

  42. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    Article  CAS  PubMed  Google Scholar 

  43. Pulczynski S, Boesen AM, Jensen OM (1994) Modulation and intracellular transport of CD20 and CD21 antigens induced by B1 and B2 monoclonal antibodies in RAJI and JOK-1 cells—an immunofluorescence and immunoelectron microscopy study. Leuk Res 18:541–552

    Article  CAS  PubMed  Google Scholar 

  44. DiJoseph JF, Dougher MM, Kalyandrug LB, Armellino DC, Boghaert ER et al (2006) Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-­targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res 12:242–249

    Article  CAS  PubMed  Google Scholar 

  45. Mathew J, Perez EA (2011) Trastuzumab emtansine in human epidermal growth factor receptor 2-positive breast cancer: a review. Curr Opin Oncol 23:594–600

    Article  CAS  PubMed  Google Scholar 

  46. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  47. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K et al (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122:3537–3547

    CAS  PubMed  Google Scholar 

  48. Margadant C, Raymond K, Kreft M, Sachs N, Janssen H et al (2009) Integrin alpha3beta1 inhibits directional migration and wound re-epithelialization in the skin. J Cell Sci 122:278–288

    Article  CAS  PubMed  Google Scholar 

  49. da Silva RG, Tavora B, Robinson SD, Reynolds LE, Szekeres C et al (2010) Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. Am J Pathol 177:1534–1548

    Article  PubMed  CAS  Google Scholar 

  50. Subbaram S, Dipersio CM (2011) Integrin alpha3beta1 as a breast cancer target. Expert Opin Ther Targets 15:1197–1210

    Article  CAS  PubMed  Google Scholar 

  51. Gao C, Mao S, Ronca F, Zhuang S, Quaranta V et al (2003) De novo identification of tumor-­specific internalizing human antibody-receptor pairs by phage-display methods. J Immunol Methods 274:185–197

    Article  CAS  PubMed  Google Scholar 

  52. Muller PAJ, Caswell PT, Doyle B, Iwanicki MP, Tan EH et al (2010) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341

    Article  Google Scholar 

  53. Dozynkiewicz MA, Jamieson NB, Macpherson I, Grindlay J, van den Berghe PV et al (2012) Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev Cell 22:131–145

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    Article  CAS  PubMed  Google Scholar 

  55. Trowbridge IS, Lopez F (1982) Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro. Proc Natl Acad Sci USA 79:1175–1179

    Article  CAS  PubMed  Google Scholar 

  56. Weissman AM, Klausner RD, Rao K, Harford JB (1986) Exposure of K562 cells to anti-­receptor monoclonal antibody OKT9 results in rapid redistribution and enhanced degradation of the transferrin receptor. J Cell Biol 102:951–958

    Article  CAS  PubMed  Google Scholar 

  57. Poul MA, Becerril B, Nielsen UB, Morisson P, Marks JD (2000) Selection of tumor-specific internalizing human antibodies from phage libraries. J Mol Biol 301:1149–1161

    Article  CAS  PubMed  Google Scholar 

  58. Crepin R, Goenaga AL, Jullienne B, Bougherara H, Legay C et al (2010) Development of human single-chain antibodies to the transferrin receptor that effectively antagonize the growth of leukemias and lymphomas. Cancer Res 70:5497–5506

    Article  CAS  PubMed  Google Scholar 

  59. Moura IC, Lepelletier Y, Arnulf B, England P, Baude C et al (2004) A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATL patients. Blood 103:1838–1845

    Article  CAS  PubMed  Google Scholar 

  60. Lepelletier Y, Camara-Clayette V, Jin H, Hermant A, Coulon S et al (2007) Prevention of mantle lymphoma tumor establishment by routing transferrin receptor toward lysosomal compartments. Cancer Res 67:1145–1154

    Article  CAS  PubMed  Google Scholar 

  61. Baserga R, Peruzzi F, Reiss K (2003) The IGF-1 receptor in cancer biology. Int J Cancer 107:873–877

    Article  CAS  PubMed  Google Scholar 

  62. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518

    Article  CAS  PubMed  Google Scholar 

  63. Hailey J, Maxwell E, Koukouras K, Bishop WR, Pachter JA et al (2002) Neutralizing anti-­insulin-like growth factor receptor 1 antibodies inhibit receptor function and induce receptor degradation in tumor cells. Mol Cancer Ther 1:1349–1353

    CAS  PubMed  Google Scholar 

  64. Maloney EK, McLaughlin JL, Dagdigian NE, Garrett LM, Connors KM et al (2003) An anti-­insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res 63:5073–5083

    CAS  PubMed  Google Scholar 

  65. Burtrum D, Zhu Z, Lu D, Anderson DM, Prewett M et al (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63:8912–8921

    CAS  PubMed  Google Scholar 

  66. Sachdev D, Singh R, Fujita-Yamaguchi Y, Yee D (2006) Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-­insulin-like growth factor therapy in breast cancer. Cancer Res 66:2391–2402

    Article  CAS  PubMed  Google Scholar 

  67. Sachdev D, Li SL, Hartell JS, Fujita-Yamaguchi Y, Miller JS et al (2003) A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res 63:627–635

    CAS  PubMed  Google Scholar 

  68. Mao Y, Shang Y, Pham VC, Ernst JA, Lill JR et al (2011) Polyubiquitination of insulin-like growth factor I receptor (IGF-IR) activation loop promotes antibody-induced receptor internalization and down-regulation. J Biol Chem 286:41852–41861

    Article  CAS  PubMed  Google Scholar 

  69. Shang Y, Mao Y, Batson J, Scales SJ, Phillips G et al (2008) Antixenograft tumor activity of a humanized anti-insulin-like growth factor-I receptor monoclonal antibody is associated with decreased AKT activation and glucose uptake. Mol Cancer Ther 7:2599–2608

    Article  CAS  PubMed  Google Scholar 

  70. Runnels HA, Arbuckle JA, Bailey KS, Nicastro PJ, Sun D et al (2010) Human monoclonal antibodies to the insulin-like growth factor 1 receptor inhibit receptor activation and tumor growth in preclinical studies. Adv Ther 27:458–475

    Article  CAS  PubMed  Google Scholar 

  71. Cohen BD, Baker DA, Soderstrom C, Tkalcevic G, Rossi AM et al (2005) Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11:2063–2073

    Article  CAS  PubMed  Google Scholar 

  72. Klapper LN, Glathe S, Vaisman N, Hynes NE, Andrews GC et al (1999) The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci USA 96:4995–5000

    Article  CAS  PubMed  Google Scholar 

  73. Fumin S, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (2010) ErbB3/HER3 ­intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci USA 107:7692–7697

    Google Scholar 

  74. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  75. Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184

    Article  CAS  PubMed  Google Scholar 

  76. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  PubMed  Google Scholar 

  77. Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology (Bethesda) 25:85–101

    Article  CAS  Google Scholar 

  78. Pao W, Chmielecki J (2010) Rational, biologically based treatment of EGFR-mutant non-­small-cell lung cancer. Nat Rev Cancer 10:760–774

    Article  CAS  PubMed  Google Scholar 

  79. Baselga J (2006) Targeting tyrosine kinases in cancer: the second wave. Science 312:1175–1178

    Article  CAS  PubMed  Google Scholar 

  80. Baselga J, Cortes J, Kim SB, Im SA, Hegg R et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119

    Article  CAS  PubMed  Google Scholar 

  81. Flanagan JG, Leder P (1988) Neu protooncogene fused to an immunoglobulin heavy chain gene requires immunoglobulin light chain for cell surface expression and oncogenic transformation. Proc Natl Acad Sci USA 85:8057–8061

    Article  CAS  PubMed  Google Scholar 

  82. Beerli RR, Wels W, Hynes NE (1994) Intracellular expression of single chain antibodies reverts ErbB-2 transformation. J Biol Chem 269:23931–23936

    CAS  PubMed  Google Scholar 

  83. Drebin JA, Stern DF, Link VC, Weinberg RA, Greene MI (1984) Monoclonal antibodies identify a cell-surface antigen associated with an activated cellular oncogene. Nature 312:545–548

    Article  CAS  PubMed  Google Scholar 

  84. Drebin JA, Link VC, Greene MI (1988) Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene 2:273–277

    CAS  PubMed  Google Scholar 

  85. Spiridon CI, Ghetie MA, Uhr J, Marches R, Li JL et al (2002) Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo. Clin Cancer Res 8:1720–1730

    CAS  PubMed  Google Scholar 

  86. Ben-Kasus T, Schechter B, Lavi S, Yarden Y, Sela M (2009) Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis. Proc Natl Acad Sci USA 106:3294–3299

    Article  CAS  PubMed  Google Scholar 

  87. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J et al (2009) Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 69:9330–9336

    Article  CAS  PubMed  Google Scholar 

  88. Sarup JC, Johnson RM, King KL, Fendly BM, Lipari MT et al (1991) Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Regul 1:72–82

    CAS  PubMed  Google Scholar 

  89. Yarden Y (1990) Agonistic antibodies stimulate the kinase encoded by the neu protooncogene in living cells but the oncogenic mutant is constitutively active. Proc Natl Acad Sci USA 87:2569–2573

    Article  CAS  PubMed  Google Scholar 

  90. Hurwitz E, Stancovski I, Sela M, Yarden Y (1995) Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake. Proc Natl Acad Sci USA 92:3353–3357

    Article  CAS  PubMed  Google Scholar 

  91. Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C et al (2004) Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15:5268–5282

    Article  CAS  PubMed  Google Scholar 

  92. Longva KE, Pedersen NM, Haslekas C, Stang E, Madshus IH (2005) Herceptin-induced inhibition of ErbB2 signaling involves reduced phosphorylation of Akt but not endocytic down-regulation of ErbB2. Int J Cancer 116:359–367

    Article  CAS  PubMed  Google Scholar 

  93. Neve RM, Nielsen UB, Kirpotin DB, Poul MA, Marks JD et al (2001) Biological effects of anti-ErbB2 single chain antibodies selected for internalizing function. Biochem Biophys Res Commun 280:274–279

    Article  CAS  PubMed  Google Scholar 

  94. Klapper LN, Vaisman N, Hurwitz E, Pinkas-Kramarski R, Yarden Y et al (1997) A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene 14:2099–2109

    Article  CAS  PubMed  Google Scholar 

  95. Klapper LN, Waterman H, Sela M, Yarden Y (2000) Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res 60:3384–3388

    CAS  PubMed  Google Scholar 

  96. Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B et al (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2:127–137

    Article  CAS  PubMed  Google Scholar 

  97. Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN et al (1998) Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J 17:3385–3397

    Article  CAS  PubMed  Google Scholar 

  98. Hughes JB, Berger C, Rodland MS, Hasmann M, Stang E et al (2009) Pertuzumab increases epidermal growth factor receptor down-regulation by counteracting epidermal growth factor receptor-ErbB2 heterodimerization. Mol Cancer Ther 8:1885–1892

    Article  CAS  PubMed  Google Scholar 

  99. Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19:6550–6565

    Article  CAS  PubMed  Google Scholar 

  100. Fan Z, Masui H, Altas I, Mendelsohn J (1993) Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 53:4322–4328

    CAS  PubMed  Google Scholar 

  101. Jaramillo ML, Leon Z, Grothe S, Paul-Roc B, Abulrob A et al (2006) Effect of the anti-­receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting. Exp Cell Res 312:2778–2790

    Article  CAS  PubMed  Google Scholar 

  102. Friedman LM, Rinon A, Schechter B, Lyass L, Lavi S et al (2005) Synergistic down-­regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 102:1915–1920

    Article  CAS  PubMed  Google Scholar 

  103. Spangler JB, Neil JR, Abramovitch S, Yarden Y, White FM et al (2010) Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 107:13252–13257

    Article  CAS  PubMed  Google Scholar 

  104. Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C et al (2010) Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70:588–597

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Yarden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tarcic, G., Yarden, Y. (2013). Antibody-Mediated Receptor Endocytosis: Harnessing the Cellular Machinery to Combat Cancer. In: Yarden, Y., Tarcic, G. (eds) Vesicle Trafficking in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6528-7_17

Download citation

Publish with us

Policies and ethics