Skip to main content

Rickets

  • Living reference work entry
  • First Online:
Atlas of Genetic Diagnosis and Counseling
  • 108 Accesses

Abstract

Normal bone mineralization requires adequate supplies of calcium and phosphate and normal vitamin D metabolism (Norman 1982). Defective supply or function of any of these factors can cause rickets and osteomalacia (Pitt 1991). Nutritional rickets is a major public health problem in many countries of the world (Prentice 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Khenaizan, S., & Vitale, P. (2003). Vitamin D-dependent rickets type II with alopecia: Two case reports and review of the literature. International Journal of Dermatology, 42, 682–685.

    Article  Google Scholar 

  • Babiker, A. M., Al Gadi, I., Al-Jurayyan, N. A., et al. (2014). A novel pathogenic mutation of the CYP27B1 gene in a patient with vitamin D-dependent rickets type 1: A case report. BMC Research Notes, 7, 1–6.

    Article  Google Scholar 

  • Baroncelli, G. I., Toschi, B., & Bertelloni, S. (2012). Hypophosphatemic rickets. Current Opinion in Endocrinology, Diabetes, and Obesity, 19, 460–467.

    Article  CAS  PubMed  Google Scholar 

  • Begum, R., Continho, M. L., & Dormandy, T. L. (1968). Maternal malabsorption presenting congenital rickets. Lancet, 1, 1048–1052.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, N. (1999). Rickets today-children still need milk and sunshine. The New England Journal of Medicine, 341, 602–603.

    Article  CAS  PubMed  Google Scholar 

  • Brownstein, C. A., Adler, F., Nelson-Williams, C., et al. (2008). A translocation causing increased α-Klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proceedings of National Academy of Sciences USA, 105, 3455–3460.

    Article  CAS  Google Scholar 

  • Burckhardt, M.-A., Schifferli, A., Krieg, A. H., et al. (2015). Tumor-associated FGF-23-induced hypophosphatemic rickets in children: A case report and review of the literature. Pediatric Nephrology, 30, 179–182.

    Article  PubMed  Google Scholar 

  • Carpenter, T. O. (1997). New perspectives on the biology and treatment of x-linked hypophosphatemic rickets. Pediatric Clinics of North America, 44, 443–466.

    Article  CAS  PubMed  Google Scholar 

  • Chandran, M., Chng, C. L., Zhao, Y., et al. (2010). Novel PHEX gene mutation associated with X linked hypophosphatemic rickets. Nephron. Physiology, 116, 17–21.

    Article  Google Scholar 

  • Cheon, C. K., Lee, H. S., Kim, S. Y., et al. (2014). A novel de novo mutation within PHEX gene in a young girl with hypophosphatemic rickets and review of literature. Annals of Pediatric Endocrinology & Metabolism, 19, 36–41.

    Article  Google Scholar 

  • Cho, H. Y., Lee, B. H., Kang, J. H., et al. (2005). A clinical and molecular genetic study of hypophosphatemic rickets in children. Pediatric Research, 58, 329–333.

    Article  CAS  PubMed  Google Scholar 

  • Currarino, G. D., Neuhauser, E. B. D., Reyersbach, G. C., et al. (1957). Hypophosphatasia. American Journal of Roentgenology, 78, 392–419.

    CAS  Google Scholar 

  • Demir, K., Kattan, W. E., Zou, M., et al. (2015). Novel CYP27B1 gene mutations in patients with Vitamin D-dependent rickets type 1A. PLoS One, 10, 1–14.

    CAS  Google Scholar 

  • DiMeglio, L. A., & Econs, M. J. (2001). Hypophosphatemic rickets. Reviews in Endocrine & Metabolic Disorders, 2, 165–173.

    Article  CAS  Google Scholar 

  • Elder, C. J., & Bishop, N. (2014). Rickets. Lancet, 383, 1665–1676.

    Article  PubMed  Google Scholar 

  • Elidrissy, A. T. H. (2016). The return of congenital rickets, are we missing occult cases? Calcified Tissue International, 99, 227–236.

    Article  CAS  PubMed  Google Scholar 

  • Farrow, E. G., Davis, S. I., Ward, L. M., et al. (2009). Molecular analysis of DMP1 mutants causing autosomal recessive hypophosphatemic rickets. Bone, 44, 287–294.

    Article  CAS  PubMed  Google Scholar 

  • Felman, K. W., Marcuse, E. K., & Springer, D. A. (1990). Nutritional rickets. American Family Physician, 42, 1311–1318.

    Google Scholar 

  • Fucentese, S. F., Neuhaus, T. J., Ramseier, L. E., et al. (2008). Metabolic and orthopedic management of X-linked vitamin D-resistant hypophosphatemic rickets. Journal of Childrens Orthopaedics, 2, 285–291.

    Article  Google Scholar 

  • Gartner, L. M., & Greer, F. R. (2003). Prevention of rickets and vitamin D deficiency: New guidelines for vitamin D intake. Pediatrics, 111, 908–910.

    Article  PubMed  Google Scholar 

  • Glorieux, F. H., Scriver, C. R., Reade, T. M., et al. (1972). Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. The New England Journal of Medicine, 287, 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Goldsweig, B. K., & Carpenter, T. O. (2015). Hypophosphatemic rickets: Lessons from disrupted FGF23 control of phosphorus homeostasis. Current Osteoporosis Reports, 13, 88–97.

    Article  PubMed  Google Scholar 

  • Hardcastle, M. R., & Dittmer, K. E. (2015). Fibroblast growth factor 23: A new dimension to diseases of calcium-phosphorus metabolism. Veterinary Pathology, 52, 770–784.

    Article  CAS  PubMed  Google Scholar 

  • Jaszczuk, P., Rogers, G. F., Guzman, R., et al. (2016). X-linked hypophosphatemic rickets and sagittal craniosynostosis: Three patients requiring operative cranial expansion: Case series and literature review. Childs Nervous System, 32, 887–891.

    Article  Google Scholar 

  • Joiner, T. A., Foster, C., & Shope, T. (2000). The many faces of vitamin D deficiency rickets. Pediatrics in Review, 21, 296–302.

    Article  CAS  PubMed  Google Scholar 

  • Kreiter, S. R., Schwartz, R. P., Kirkman, H. N., Jr., et al. (2000). Nutritional rickets in African American breast-fed infants. Journal of Pediatrics, 137, 153–157.

    Article  CAS  PubMed  Google Scholar 

  • Kruse, K. (1995). Pathophysiology of calcium metabolism in children with vitamin D-deficiency rickets. Journal of Pediatrics, 126, 736–741.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Agrawal, A., Shaharyar, A., et al. (2015). Revisiting ‘The Double malleoli’ sign in nutritional rickets. Journal of Clinical Orthopaedics and Trauma, 6, 205–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, T. L., States, L., Greig, A., et al. (1992). Maternal renal insufficiency: A cause of congenital rickets and secondary hyperparathyroidism. Pediatric Radiology, 22, 315–316.

    Article  CAS  PubMed  Google Scholar 

  • Levy-Litan, V., Hershkovitz, E., Avizov, E., et al. (2010). Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. American Journal of Human Genetics, 86, 273–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, Y. H., Ovejero, D., Sugarman, J. S., et al. (2014). Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Human Molecular Genetics, 23, 397–407.

    Article  CAS  PubMed  Google Scholar 

  • Lim, Y. H., Ovejero, D., Derrick, K. M., et al. (2016). Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a multilineage somatic mosaic RASopathy. Journal of American Academy of Dermatology, 75, 420–427.

    Article  CAS  Google Scholar 

  • Linglart, A., Biosse-Duplan, M., Briot, K., et al. (2014). Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocrine Connections, 3, R13–R30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., et al. (2010). Loss-of function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. American Journal of Human Genetics, 86, 267–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malloy, P. J., Pike, J. W., & Feldman, D. (1999). The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocrine Reviews, 20, 156–188.

    CAS  PubMed  Google Scholar 

  • Mancrieff, H., & Fadahunsi, T. (1974). Congenital rickets due to maternal vitamin D deficiency. Archives of Disease in Childhood, 49, 810–811.

    Article  Google Scholar 

  • Miller, W. L. (2016). Genetic disorders of Vitamin D biosynthesis and degradation. Journal of Steroid Biochemistry and Molecular Biology, 6 Apr 2016. [Epub ahead of print].

    Google Scholar 

  • Miller, W. L., & Portale, A. A. (2000). Vitamin D 1 alpha-hydroxylase. Trends in Endocrinology and Metabolism, 11, 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Mughal, M. Z. (2011). Rickets. Current Osteoporosis Reports, 9, 291–299.

    Article  PubMed  Google Scholar 

  • Murthy, A. S. (2009). X-linked hypophosphatemic rickets and craniosynostosis. The Journal of Craniofacial Surgery, 20, 439–442.

    Article  PubMed  Google Scholar 

  • Norman, M. E. (1982). Vitamin D in bone disease. Pediatric Clinics of North America, 229, 947–971.

    Article  Google Scholar 

  • Ovejero, D., Lim, Y. H., Boyce, A. M., et al. (2016). Cutaneous skeletal hypophosphatemia syndrome: clinical spectrum, natural history, and treatment. Osteoporosis International, 6 Aug 2016. [Epub ahead of print].

    Google Scholar 

  • Pai, B., & Shaw, N. (2011). Understanding rickets. Paediatrics and Child Health, 21, 315–321.

    Article  Google Scholar 

  • Pavone, V., Testa, G., Iachino, S. G., et al. (2015). Hypophosphatemic rickets: Etiology, clinical features and treatment. European Journal of Orthopaedic Surgery & Traumatology, 25, 221–226.

    Article  Google Scholar 

  • Pettifor, J. M. (2008). What’s new in hypophosphataemic rickets? European Journal of Pediatrics, 167, 493–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettifor, J. M. (2015). Screening for nutritional rickets in a community. Journal of Steroid Biochemistry and Molecular Biology, 10 Sept 2015. [Epub ahead of print].

    Google Scholar 

  • Pitt, M. J. (1981). Rachitic and osteomalacic syndromes. Radiologic Clinics of North America, 19, 581–599.

    CAS  PubMed  Google Scholar 

  • Pitt, M. J. (1991). Rickets and osteomalacia are still around. Radiologic Clinics of North America, 29, 97–118.

    CAS  PubMed  Google Scholar 

  • Prentice, A. (2013). Nutritional rickets around the world. Journal of Steroid Biochemistry & Molecular Biology, 136, 201–206.

    Article  CAS  Google Scholar 

  • Quinlan, C., Guegan, K., Offiah, A., et al. (2012). Growth in PHEX-associated X-linked hypophosphatemic rickets: The importance of early treatment. Pediatric Nephrology, 27, 581–588.

    Article  PubMed  Google Scholar 

  • Sabandal, M. M. I., Robotta, P., Burklein, S., et al. (2015). Review of the dental implications of X-linked hypophosphataemic rickets (XLHR). Clinical Oral Investigation, 19, 759–768.

    Article  Google Scholar 

  • Sarat, G., Priyanka, N., Prabhat, M. P. V., et al. (2016). Hypophosphatemic rickets in siblings: A rare case report. Case Reports in Dentistry, 2016, 1–8.

    Article  Google Scholar 

  • Schmitt, C. P., & Mehls, O. (2004). The enigma of hyperparathyroidism in hypophosphatemic rickets. Pediatric Nephrology, 19, 473–477.

    Article  PubMed  Google Scholar 

  • Schneider, R. (1984). Radiologic methods of evaluating generalized osteopenia. Orthopedic Clinics of North America, 15, 631–651.

    CAS  PubMed  Google Scholar 

  • Sharkey, M. S., Grunseich, K., & Carpenter, T. O. (2015). Contemporary medical and surgical management of X-linked hypophosphatemic rickets. Journal of American Academy of Orthopedic Surgery, 23, 433–442.

    Article  Google Scholar 

  • Shaw, N. J. (2015). Prevention and treatment of nutritional rickets. Journal of Steroid Biochemistry and Molecular Biology, 19 Oct 2015. [Epub ahead of print].

    Google Scholar 

  • Shore, R. M., & Chesney, R. W. (2013a). Rickets: Part I. Pediatric Radiology, 43, 140–145.

    Article  PubMed  Google Scholar 

  • Shore, R. M., & Chesney, R. W. (2013b). Rickets: part II. Pediatric Radiology, 43, 152–172.

    Article  PubMed  Google Scholar 

  • Singleton, R., Lescher, R., Gessner, B. D., et al. (2015). Rickets and Vitamin D deficiency in Alaska native children. Pediatric Endocrinology & Metabolism, 28, 815–823.

    CAS  Google Scholar 

  • Smith, R. (1972). The pathophysiology and management of rickets. The Orthopedic Clinics of North America, 3, 601–621.

    CAS  PubMed  Google Scholar 

  • Stamp, T. C., & Baker, L. R. (1976). Recessive hypophosphataemic rickets, and possible aetiology of the ‘vitamin D-resistant’ syndrome. Archives of Disease in Childhood, 51, 360–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thacher, T. D., & Levine, M. A. (2016). CYP2R1 mutations causing vitamin D-deficiency rickets. Journal of Steroid Biochemistry & Molecular Biology, 27 July 2016. [Epub ahead of print].

    Google Scholar 

  • The HYP Consortium. (1995). A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genetics, 11, 130–136.

    Article  Google Scholar 

  • Vega, R. A., Opalak, C., Harshbarger, R. J., et al. (2016). Hypophosphatemic rickets and craniosynostosis: A multicenter case series. Journal of Neurosurgery: Pediatrics, 17, 694–700.

    PubMed  Google Scholar 

  • Vintzileos, A. M., Campbell, W. A., Soberman, S. M., et al. (1985). Fetal atrial flutter and X-linked dominant vitamin D-resistant rickets. Obstetrics and Gynecology, 65, 39S–44S.

    CAS  PubMed  Google Scholar 

  • Weisman, Y., Jaccard, N., Legum, C., et al. (1990). Prenatal diagnosis of vitamin D-dependent rickets, type II: Response to 1,25-dihydroxyvitamin D in amniotic fluid cells and fetal tissues. Journal of Clinical Endocrinology and Metabolism, 71, 937–943.

    Article  CAS  PubMed  Google Scholar 

  • Wharton, B., & Bishop, N. (2003). Rickets. Lancet, 362, 1389–1400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Chen, H. (2016). Rickets. In: Atlas of Genetic Diagnosis and Counseling. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6430-3_203-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6430-3_203-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6430-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics