Skip to main content

Foxp3+ Regulatory T Cells in Tuberculosis

  • Chapter
  • First Online:
The New Paradigm of Immunity to Tuberculosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 783))

Abstract

The immune response to Mycobacterium tuberculosis (Mtb) must be tightly regulated to mount a sufficient response to limit bacterial growth and dissemination while avoiding excessive inflammation that could damage host tissues. A wide variety of cell types, cell surface molecules, and cytokines are likely to contribute to this regulation, but recent studies have revealed that a subset of CD4 T cells expressing the transcription factor Foxp3, called regulatory T (reg) cells, play a critical role [13]. Although the first reports of T reg cells in tuberculosis (TB) occurred only recently (i.e., 2006) [4, 5], we have already gained many insights into their activity during TB. While it is likely that T reg cells do play some beneficial roles by preventing inflammation-mediated damage to host tissues during TB, this aspect of their function has not been well studied to date. What is clear, however, is that during the initial T cell response to Mtb infection, Mtb induces the expansions of T reg cells that delay the onset of adaptive immunity, suggesting that Mtb has hijacked T reg cell-mediated immune suppression to allow it to replicate unabated in the lung until T cells finally arrive [6]. In this chapter, we will first provide an overview of the delayed T cell response to Mtb and a brief introduction to regulatory T cells. We will then review what is known about T reg cells from observations in human populations, discuss mechanistic insights revealed in the mouse model, and speculate about the relevance of this understanding for future efforts to prevent and treat TB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kursar M et al (2007) Cutting edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J Immunol 178:2661–2665

    PubMed  CAS  Google Scholar 

  2. Scott-Browne JP et al (2007) Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 204:2159–2169

    Article  PubMed  CAS  Google Scholar 

  3. Quinn KM et al (2006) Inactivation of CD4+ CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load. Immunol Cell Biol 84:467–474

    Article  PubMed  CAS  Google Scholar 

  4. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A (2006) Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 173:803–810

    Article  PubMed  CAS  Google Scholar 

  5. Ribeiro-Rodrigues R et al (2006) A role for CD4+ CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144:25–34

    Article  PubMed  CAS  Google Scholar 

  6. Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207:1409–1420

    Article  PubMed  CAS  Google Scholar 

  7. Wallgren A (1948) The time-table of tuberculosis. Tubercle 29:245–251

    Article  PubMed  CAS  Google Scholar 

  8. Poulsen A (1950) Some clinical features of tuberculosis. 1 incubation period. Acta Tuberc Scand 24:311–346

    PubMed  CAS  Google Scholar 

  9. Urdahl KB, Shafiani S, Ernst JD (2011) Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol 4:288–293

    Article  PubMed  CAS  Google Scholar 

  10. Wolf AJ et al (2007) Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 179:2509–2519

    PubMed  CAS  Google Scholar 

  11. Wolf AJ et al (2008) Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115

    Article  PubMed  CAS  Google Scholar 

  12. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM (2002) Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70:4501–4509

    Article  PubMed  CAS  Google Scholar 

  13. Reiley WW et al (2008) ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in the mediastinal lymph nodes. Proc Natl Acad Sci USA 105:10961–10966

    Article  PubMed  CAS  Google Scholar 

  14. Khader SA et al (2006) Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J Exp Med 203:1805–1815

    Article  PubMed  CAS  Google Scholar 

  15. Blomgran R, Desvignes L, Briken V, Ernst JD (2012) Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11:81–90

    Article  PubMed  CAS  Google Scholar 

  16. Behar SM et al (2011) Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol 4:279–287

    Article  PubMed  CAS  Google Scholar 

  17. Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8:668–674

    PubMed  CAS  Google Scholar 

  18. Divangahi M, Desjardins D, Nunes-Alves C, Remold HG, Behar SM (2010) Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 11:751–758

    Article  PubMed  CAS  Google Scholar 

  19. Hinchey J et al (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117:2279–2288

    Article  PubMed  CAS  Google Scholar 

  20. Sakaguchi S, Takahashi T, Nishizuka Y (1982) Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J Exp Med 156:1565–1576

    Article  PubMed  CAS  Google Scholar 

  21. Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396

    Article  PubMed  CAS  Google Scholar 

  22. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  23. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  24. Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  PubMed  CAS  Google Scholar 

  25. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  26. Bennett CL et al (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21

    Article  PubMed  CAS  Google Scholar 

  27. Brunkow ME et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  PubMed  CAS  Google Scholar 

  28. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annual Rev Immunol 30:531–564

    Google Scholar 

  29. Lathrop SK et al (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254

    Article  PubMed  CAS  Google Scholar 

  30. Haribhai D et al (2011) A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 35:109–122

    Article  PubMed  CAS  Google Scholar 

  31. Shevach EM (2009) Mechanisms of foxp3 + T regulatory cell-mediated suppression. Immunity 30:636–645

    Article  PubMed  CAS  Google Scholar 

  32. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+ CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

    Article  PubMed  CAS  Google Scholar 

  33. Suffia IJ, Reckling SK, Piccirillo CA, Goldszmid RS, Belkaid Y (2006) Infected site-restricted Foxp3 + natural regulatory T cells are specific for microbial antigens. J Exp Med 203:777–788

    Article  PubMed  CAS  Google Scholar 

  34. Belkaid Y, Tarbell K (2009) Regulatory T cells in the control of host-microorganism interactions (*). Annual Rev Immunol 27:551–589

    Article  CAS  Google Scholar 

  35. Burl S et al (2007) FOXP3 gene expression in a tuberculosis case contact study. Clin Exp Immunol 149:117–122

    Article  PubMed  CAS  Google Scholar 

  36. Green AM et al (2010) CD4(+) regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis 202:533–541

    Article  PubMed  CAS  Google Scholar 

  37. Campbell DJ, Koch MA (2011) Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 11:119–130

    Article  PubMed  CAS  Google Scholar 

  38. Marin ND et al (2010) Regulatory T cell frequency and modulation of IFN-gamma and IL-17 in active and latent tuberculosis. Tuberculosis 90:252–261

    Article  PubMed  CAS  Google Scholar 

  39. Wergeland I, Assmus J, Dyrhol-Riise AM (2011) T regulatory cells and immune activation in Mycobacterium tuberculosis infection and the effect of preventive therapy. Scand J Immunol 73:234–242

    Article  PubMed  CAS  Google Scholar 

  40. Chen X et al (2007) CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin Immunol 123:50–59

    Article  PubMed  CAS  Google Scholar 

  41. Welsh KJ, Risin SA, Actor JK, Hunter RL (2011) Immunopathology of postprimary tuberculosis: increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clin Dev Immunol 2011:1–9

    Google Scholar 

  42. Sharma PK et al (2009) FoxP3+ regulatory T cells suppress effector T-cell function at pathologic site in miliary tuberculosis. Am J Respir Crit Care Med 179:1061–1070

    Article  PubMed  CAS  Google Scholar 

  43. Ohkura N, Sakaguchi S (2010) Regulatory T cells: roles of T cell receptor for their development and function. Semin Immunopathol 32:95–106

    Article  PubMed  CAS  Google Scholar 

  44. Trinath J, Maddur MS, Kaveri SV, Balaji KN, Bayry J (2012) Mycobacterium tuberculosis promotes regulatory T-cell expansion via induction of programmed death-1 Ligand 1 (PD-L1, CD274) on dendritic cells. J Infect Dis 205:694–696

    Article  PubMed  CAS  Google Scholar 

  45. Rouse BT, Sarangi PP, Suvas S (2006) Regulatory T cells in virus infections. Immunol Rev 212:272–286

    Article  PubMed  CAS  Google Scholar 

  46. Hougardy JM et al (2007) Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am J Respir Crit Care Med 176:409–416

    Article  PubMed  CAS  Google Scholar 

  47. Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annual Rev Immunol 27:393–422

    Article  CAS  Google Scholar 

  48. Fontenot JD et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341

    Article  PubMed  CAS  Google Scholar 

  49. Kohm AP et al (2006) Cutting edge: Anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+ CD25+ T regulatory cells. J Immunol 176:3301–3305

    PubMed  CAS  Google Scholar 

  50. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 107:12204–12209

    Article  PubMed  CAS  Google Scholar 

  51. Atarashi K et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341

    Article  PubMed  CAS  Google Scholar 

  52. Wing K et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  PubMed  CAS  Google Scholar 

  53. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 105:10113–10118

    Article  PubMed  CAS  Google Scholar 

  54. Koch MA et al (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10:595–602

    Article  PubMed  CAS  Google Scholar 

  55. Hsieh CS, Lee HM, Lio CW (2012) Selection of regulatory T cells in the thymus. Nat Rev Immunol 12:157–167

    PubMed  CAS  Google Scholar 

  56. Andersen P, Doherty TM (2005) The success and failure of. Nat Rev Microbiol 3:656–662

    Article  PubMed  CAS  Google Scholar 

  57. Falkinham JO III (2009) Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. J Appl Microbiol 107:356–367

    Article  PubMed  CAS  Google Scholar 

  58. Fine PE (1995) Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346:1339–1345

    Article  PubMed  CAS  Google Scholar 

  59. Black GF et al (2002) BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: Two randomised controlled studies. Lancet 359:1393–1401

    Article  PubMed  Google Scholar 

  60. Weir RE et al (2006) The influence of previous exposure to environmental mycobacteria on the interferon-gamma response to bacille Calmette-Guerin vaccination in southern England and northern Malawi. Clin Exp Immunol 146:390–399

    Article  PubMed  CAS  Google Scholar 

  61. Jaron B, Maranghi E, Leclerc C, Majlessi L (2008) Effect of attenuation of Treg during BCG immunization on anti-mycobacterial Th1 responses and protection against Mycobacterium tuberculosis. PLoS One 3:e2833

    Article  PubMed  Google Scholar 

  62. Quinn KM et al (2008) Accelerating the secondary immune response by inactivating CD4(+)CD25(+) T regulatory cells prior to BCG vaccination does not enhance protection against tuberculosis. Eur J Immunol 38:695–705

    Article  PubMed  CAS  Google Scholar 

  63. Elias D, Akuffo H, Britton S (2005) PPD induced in vitro interferon gamma production is not a reliable correlate of protection against Mycobacterium tuberculosis. Trans R Soc Trop Med Hyg 99:363–368

    Article  PubMed  CAS  Google Scholar 

  64. Fletcher HA (2007) Correlates of immune protection from tuberculosis. Curr Mol Med 7:319–325

    Article  PubMed  CAS  Google Scholar 

  65. Leal IS, Smedegard B, Andersen P, Appelberg R (2001) Failure to induce enhanced protection against tuberculosis by increasing T-cell-dependent interferon-gamma generation. Immunology 104:157–161

    Article  PubMed  CAS  Google Scholar 

  66. Mittrucker HW et al (2007) Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc Natl Acad Sci USA 104:12434–12439

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by grants from the National Institutes of Health: R01 AI076327 (KBU) and T32 AI 007411-19 (RPL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Urdahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larson, R.P., Shafiani, S., Urdahl, K.B. (2013). Foxp3+ Regulatory T Cells in Tuberculosis. In: Divangahi, M. (eds) The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, vol 783. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6111-1_9

Download citation

Publish with us

Policies and ethics