Skip to main content

Overview of Angiogenesis Inhibitors from Natural Sources

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

Angiogenesis, the biological process of formation of new blood vessels from pre-existing ones, is essential for many diseases and its modulation is considered to be an important therapeutic strategy. It is controlled by various pro and anti-­angiogenic factors. Plants, animals, microbes, and marine are the natural sources of various chemical constituents possessing anti-angiogenic activity which may act as leads in future angiogenesis inhibitors therapy. This review highlights the anti-­angiogenic activity of many constituents from natural sources along with their biochemical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  2. Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52:237–268

    PubMed  CAS  Google Scholar 

  3. Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI (2007) Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis 39:212–220

    Article  PubMed  CAS  Google Scholar 

  4. Liekens S, Clercq ED, Neyts J (2001) Angiogenesis: regulators and clinical applications. Biochem Pharmacol 61:253–270

    Article  PubMed  CAS  Google Scholar 

  5. Cristofaro B, Emanueli C (2009) Possible novel targets for therapeutic angiogenesis. Curr Opin Pharmacol 9:102–108

    Article  PubMed  CAS  Google Scholar 

  6. Raffetto JD, Khalil RA (2008) Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 75:346–356

    Article  PubMed  CAS  Google Scholar 

  7. Bikfalvi A (2004) Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem Pharmacol 68:1017–1021

    Article  PubMed  CAS  Google Scholar 

  8. Larsen AK, Ouaret D, El Ouadrani K, Petitprez A (2011) Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther 131:80–90

    Article  PubMed  CAS  Google Scholar 

  9. Peng G, Ren Y, Sun X, Zhou J, Li D (2012) Inhibition of farnesyltransferase reduces angiogenesis by interrupting endothelial cell migration. Biochem Pharmacol 83:1374–1382

    Article  PubMed  CAS  Google Scholar 

  10. Berger G, Hanahan D (2008) Modes of resistance to antiangiogenic therapy. Nat Rev Cancer 8:592–603

    Article  CAS  Google Scholar 

  11. Abdollahia A, Folkman J (2010) Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 13:16–28

    Article  CAS  Google Scholar 

  12. Qu B, Guo L, Ma J, Lv Y (2010) Antiangiogenesis therapy might have the unintended effect of promoting tumor metastasis by increasing an alternative circulatory system. Med Hypotheses 74:360–361

    Article  PubMed  CAS  Google Scholar 

  13. Myoung SK, You ML, Eun-Joung M et al (2000) Anti-angiogenic activity of Torilin, a sesquiterpene compound isolated from Torilis japonica. Int J Cancer 87:269–275

    Article  Google Scholar 

  14. Bedel O, Haudrechy A, Pouilhes A, Langlois Y (2005) Syntheses of antiangiogenic or cytotoxic natural products: fumagillin and bengacarboline. Pure Appl Chem 77:1139–1152

    Article  CAS  Google Scholar 

  15. Furness MS, Robinson TP, Ehlers T et al (2005) Anti-angiogenic agents: studies on fumagillin and curcumin analogs. Curr Pharm Des 11:357–373

    Article  PubMed  CAS  Google Scholar 

  16. Huan-Huan C, Hui-Jun Z, Xin F (2003) Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro. Pharmacol Res 48:231–236

    Article  CAS  Google Scholar 

  17. Sangtae O, In HJ, Chan MA, Woon-Seob S, Seokjoon L (2004) Synthesis and anti-­angiogenic activity of thioacetal artemisinin derivatives. Bioorg Med Chem 12:3783–3790

    Article  CAS  Google Scholar 

  18. Mankil J, Jungae T, Won-Yoon C, Kwang-Kyun P (2006) Antiangiogenic activity of deoxoartemisinin derivatives on chorioallantoic membrane. Bioorg Med Chem Lett 16:1227–1230

    Article  CAS  Google Scholar 

  19. Pratheeshkumar P, Kuttan G (2011) Vernolide-A inhibits tumour specific angiogenesis by regulating pro-inflammatory cytokines, VEGF, MMPs and TIMP. Eur J Pharmacol 656:10–18

    Article  PubMed  CAS  Google Scholar 

  20. Bian W, Chen F, Bai L, Zhang P, Qin W (2008) Dihydrotanshinone I inhibits angiogenesis both in vitro and in vivo. Acta Biochim Biophys Sin 40:1–6

    Article  PubMed  CAS  Google Scholar 

  21. Ming-Fang H, Yi-Hsien H, Li-Wha W et al (2010) Triptolide functions as a potent angiogenesis inhibitor. Int J Cancer 126:266–278

    Article  CAS  Google Scholar 

  22. Ming-Fang H, Lin L, Wei G et al (2009) Antiangiogenic activity of Tripterygium wilfordii and its terpenoids. Ethnopharmacology 121:61–68

    Article  CAS  Google Scholar 

  23. Wenbo Z, Songmin H, Yan L et al (2010) Anti-angiogenic activity of triptolide in anaplastic thyroid carcinoma is mediated by targeting vascular endothelial and tumor cells. Vascul Pharmacol 52:46–54

    Article  CAS  Google Scholar 

  24. Hussain S, Slevin M, Mesaik MA et al (2008) Cheiradone: a vascular endothelial cell growth factor receptor antagonist. BMC 9:7. http://www.biomedcentral.com/1471-2121/9/7

  25. Sangtae O, In HJ, Woon-Seob S, Seokjoon L (2003) A study on the synthesis of antiangiogenic (+)-coronarin A and congeners from (+)-sclareolide. Bioorg Med Chem Lett 13:2009–2012

    Article  CAS  Google Scholar 

  26. Rong P, XingHua G, Dan L et al (2007) Prevention of FGF-2-induced angiogenesis by scopoletin, a coumarin compound isolated from Erycibe obtusifolia Benth, and its mechanism of action. Immunopharmacology 7:211–221

    Article  CAS  Google Scholar 

  27. Hussain S, Slevin M, Matou S et al (2008) Anti-angiogenic activity of sesterterpenes; natural product inhibitors of FGF-2-induced angiogenesis. Angiogenesis 11:245–256

    Article  PubMed  CAS  Google Scholar 

  28. Yu-Jen C, Yin-Meng T, Cheng-Deng K et al (2009) Norcantharidin is a small-molecule synthetic compound with anti-angiogenesis effect. Life Sci 85:642–651

    Article  CAS  Google Scholar 

  29. Xiufeng P, Zhengfang Y, Xiaoli Z et al (2009) Acetyl-11-keto-B-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 mediated angiogenesis. Cancer Res 69:5893–5900

    Article  CAS  Google Scholar 

  30. Santos RC, Salvador JA, Marín S, Cascante M (2009) Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg Med Chem 17:6241–6250

    Article  PubMed  CAS  Google Scholar 

  31. Santos RC, Salvador JA, Marin S, Cascante M (2010) Synthesis and structure–activity relationship study of novel cytotoxic carbamate and N-acylheterocyclic bearing derivatives of betulin and betulinic acid. Bioorg Med Chem 18:4385–4396

    Article  PubMed  CAS  Google Scholar 

  32. Mukherjee R, Jaggi M, Rajendran P et al (2004) Betulinic acid and its derivatives as anti-­angiogenic agents. Bioorg Med Chem Lett 14:2181–2184

    Article  PubMed  CAS  Google Scholar 

  33. Mukherjee R, Jaggi M, Rajendran P et al (2004) Synthesis of 3-O-acyl/3-benzylidene/3-­hydrazone/3-hydrazine/17-carboxyacryloyl ester derivatives of betulinic acid as anti-­angiogenic agents. Bioorg Med Chem Lett 14:3169–3172

    Article  PubMed  CAS  Google Scholar 

  34. Fulda S (2008) Betulinic acid for cancer treatment and prevention. Int J Mol Sci 9:1096–1107

    Article  PubMed  CAS  Google Scholar 

  35. Hui H, Lei F, Xiao-ping Z, Lian-fen Z, Jian J (2009) Anti-angiogenic activity of julibrosideJ8, a natural product isolated from Albizia julibrissin. Phytomedicine 16:703–711

    Article  CAS  Google Scholar 

  36. Pudhom K, Nuanyai T, Matsubara K, Vilaivan T (2012) Antiangiogenic activity of 3,4-seco-cycloartane triterpenes from Thai Gardenia spp. and their semi-synthetic analogs. Bioorg Med Chem Lett 22:512–517

    Article  PubMed  CAS  Google Scholar 

  37. Pratheeshkumar P, Kuttan G (2011) Nomilin inhibits tumor-specific angiogenesis by downregulating VEGF, NO and proinflammatory cytokine profile and also by inhibiting the activation of MMP-2 and MMP-9. Eur J Pharmacol 668:450–458

    Article  PubMed  CAS  Google Scholar 

  38. Sahib HB, Harchan NAH, Atraqchi SAM, Abbas AA (2010) The role of medicinal herbs in angiogenesis related diseases. Int J Pharmacol 6:616–623

    Article  Google Scholar 

  39. Kim SA, Lee HJ, Ahn KS et al (2009) Paeonol exerts anti-angiogenic and anti-metastatic activities through down modulation of Akt activation and inactivation of matrix metalloproteinases. Biol Pharm Bull 32:1142–1147

    Article  PubMed  CAS  Google Scholar 

  40. Manikandan P, Murugan RS, Priyadarsini RV, Vinothini G, Nagini S (2010) Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci 86:936–941

    Article  PubMed  CAS  Google Scholar 

  41. Bai X, Cerimele F, Ushio-Fukai M et al (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 278:35501–35507

    Article  PubMed  CAS  Google Scholar 

  42. Schindler R, Mentlein R (2006) Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. Nutrition 136:1477–1482

    CAS  Google Scholar 

  43. Rong P, Yue D, Xing-Hua G, Dan L, Yu-Feng X (2011) Inhibition of vascular endothelial growth factor-induced angiogenesis by scopoletin through interrupting the autophosphorylation of VEGF receptor 2 and its downstream signaling pathways. Vascul Pharmacol 54:18–28

    Article  CAS  Google Scholar 

  44. Yu C, Zhao-Di F, Fang W, Hong-Yan L, Rui H (2005) Anti-angiogenic activity of resveratrol, a natural compound from medicinal plants. J Asian Nat Prod Res 7:205–213

    Article  CAS  Google Scholar 

  45. Wang H, Zhou H, Zou Y et al (2010) Resveratrol modulates angiogenesis through the GSK3b/b-catenin/TCF dependent pathway in human endothelial cells. Biochem Pharmacol 80:1386–1395

    Article  PubMed  CAS  Google Scholar 

  46. Pantazis P, Varman A, Simpson-Durand C et al (2010) Curcumin and turmeric attenuate arsenic induced angiogenesis in ovo. Altern Ther Health Med 16:12–14

    PubMed  Google Scholar 

  47. Gururaj AE, Belakavadi M, Venkatesh DA, Marm D, Salimath BP (2002) Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun 297:934–942

    Article  PubMed  CAS  Google Scholar 

  48. Adams BK, Ferst EM, Davis MC et al (2004) Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12:3871–3883

    Article  PubMed  CAS  Google Scholar 

  49. Chandru H, Sharada AC, Bettadaiah BK (2007) In vivo growth inhibitory and anti-­angiogenic effects of synthetic novel dienone cyclopropoxy curcumin analogs on mouse Ehrlich ascites tumor. Bioorg Med Chem 15:7696–7703

    Article  PubMed  CAS  Google Scholar 

  50. Chandru H, Sharada AC (2007) Antiangiogenic effects of synthetic analogs of curcumin in vivo. Afr J Biomed Res 10:241–248

    Google Scholar 

  51. Furness MS, Robinson TP, Ehlers T (2005) Antiangiogenic agents: studies on fumagillin and curcumin analogs. Curr Pharm Des 11:357–373

    Article  PubMed  CAS  Google Scholar 

  52. Bao-He Z, Wen-Hua Z, Zheng-Rong L (2007) (−)-Epigallocatechin-3-gallate inhibits growth of gastric cancer by reducing VEGF production and angiogenesis. World J Gastroenterol 13:1162–1169

    Google Scholar 

  53. Rong T (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    Article  CAS  Google Scholar 

  54. Ye CL, Liu JW, Wei DZ, Lu YH, Qian F (2004) In vitro anti-tumor activity of 2′,4′-dihydroxy-­6′-methoxy-3′,5′-dimethylchalcone against six established human cancer cell lines. Pharmacol Res 50:505–510

    Article  PubMed  CAS  Google Scholar 

  55. Nam NH, Kim Y, You YJ et al (2003) Cytotoxic 2′,5′-dihydroxychalcones with unexpected anti-angiogenic activity. Eur J Med Chem 38:179–187

    Article  PubMed  CAS  Google Scholar 

  56. Hsu YL, Kuo PL, Tzeng WS, Lin CC (2006) Chalcone inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis. Food Chem Toxicol 44:704–713

    Article  PubMed  CAS  Google Scholar 

  57. Albini A, Eva RD, Vene R et al (2005) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kB and Akt as targets. FASEB J 20:527–529

    PubMed  Google Scholar 

  58. Albini A, Dell ER, Vene R (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kB and Akt as targets. FASEB J 20(3):527–529. doi:10.1096/fj.05-5128fje

    Google Scholar 

  59. Kim YH, Shin EK, Kim DH et al (2010) Anti-angiogenic effect of licochalcone A. Biochem Pharmacol 80:1152–1159

    Article  PubMed  CAS  Google Scholar 

  60. Lee YS, Lim SS, Shin KH et al (2006) Anti-angiogenic and anti-tumor activities of 2-hydroxy-4-methoxychalcone. Biol Pharm Bull 29:1028–1031

    Article  PubMed  CAS  Google Scholar 

  61. Lilian A, Navarini F, Chiaradia LD et al (2009) Hydroxychalcones induces apoptosis in B16-­F10 melanoma cells via GSH and ATP depletion. Eur J Med Chem 44:1630–1637

    Article  CAS  Google Scholar 

  62. Ngameni B, Touaibia M, Belkaid A et al (2007) Inhibition of matrix metalloproteinase-2 secretion by chalcones from the twigs of Dorstenia barteri. ARKIVOC ix:91–103

    Google Scholar 

  63. Mojzisa J, Varinskaa L, Mojzisova G, Kostovac I, Mirossaya L (2008) Anti-angiogenic effects of flavonoids and chalcones. Pharmacol Res 57:259–265

    Article  CAS  Google Scholar 

  64. Park BC, Park SY, Lee JS et al (2009) The anti-angiogenic effects of 1-furan-2-yl-3-pyridin-2-yl-propenone are mediated through the suppression of both VEGF production and VEGF-­induced signaling. Vascul Pharmacol 50:123–131

    Article  PubMed  CAS  Google Scholar 

  65. Rizvi SUF, Siddiqui HL, Nisar M, Khan N, Khan I (2012) Discovery and molecular docking of quinolyl-thienyl chalcones as anti-angiogenic agents targeting VEGFR-2 tyrosine kinase. Bioorg Med Chem Lett 22:942–944

    Article  PubMed  CAS  Google Scholar 

  66. Gatne D, Ghone S, Mohanraj K, Addepalli V (2010) Design and synthesis of VEGFR-2 ligands as tumor angiogenesis inhibitors. In: Conference on frontiers in medicinal chemistry, organized by German Pharma Society, Germany

    Google Scholar 

  67. Kiriakidis S, Hogemeier O, Starcke S et al (2005) Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay. Br J Nutr 93(3):317–323

    Article  PubMed  CAS  Google Scholar 

  68. Farina HG, Pomies M, Alonso DF, Gomez DE (2006) Antitumor and antiangiogenic activity of soy isoflavones genistein in mouse models of melanoma and breast cancer. Oncol Rep 16:885–891

    PubMed  CAS  Google Scholar 

  69. Pang X, Yi T, Yi Z et al (2009) Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting Rho GTPases and ERK signaling pathways. Cancer Res 69:518–525

    Article  PubMed  CAS  Google Scholar 

  70. Jun-Jen L, Tien-Shang H, Wen-Fang C, Fung-Jou L (2003) Baicalein and baicalin are potent inhibitors of angiogenesis: inhibition of endothelial cell proliferation, migration and differentiation. Int J Cancer 106:559–565

    Article  CAS  Google Scholar 

  71. He L, Wu Y, Lin L et al (2011) Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway. Cancer Sci 102:219–225

    Article  PubMed  CAS  Google Scholar 

  72. Fu B, Xue J, Li Z et al (2007) Chrysin inhibits expression of hypoxia-inducible factor-1α through reducing hypoxia-inducible factor-1α stability and inhibiting its protein synthesis. Mol Cancer Ther 6:220–226

    Article  PubMed  CAS  Google Scholar 

  73. Na L, Ying G, Yun L et al (2008) Wogonin suppresses tumor growth in vivo and VEGF-­induced angiogenesis through inhibiting tyrosine phosphorylation of VEGFR-2. Life Sci 82:956–963

    Article  CAS  Google Scholar 

  74. Yan C, Na L, Yun L et al (2009) Wogonoside inhibits lipopolysaccharide-induced angiogenesis in vitro and in vivo via toll-like receptor 4 signal transduction. Toxicology 259:10–17

    Article  CAS  Google Scholar 

  75. Mojzis J, Sarissky M, Pilatova M et al (2008) In vitro antiproliferative and antiangiogenic effects of flavin7®. Physiol Res 57:413–420

    PubMed  CAS  Google Scholar 

  76. Jee-Young L, Ki-Woong J, Woonghee K, Yong SH, Yangmee K (2009) Binding models of flavonols to human vascular endothelial growth factor receptor-2. Bull Korean Chem Soc 30:2083–2086

    Article  Google Scholar 

  77. Gacche R, Shegokar H, Gond D, Archana J, Ghole V (2010) Effect of hydroxyl substitution of flavone on angiogenesis and free radical scavenging activities: a structure–activity relationship studies using computational tools. Eur J Pharm Sci 39:37–44

    Article  CAS  Google Scholar 

  78. Stefano ID, Raspaglio G, Zannoni GF et al (2009) Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem Pharmacol 78:1374–1381

    Article  PubMed  CAS  Google Scholar 

  79. Zeng-Yun A, Yi-Yong Y, Dan P et al (2010) Synthesis and evaluation of graveoline and graveolinine derivatives with potent anti-angiogenesis activities. Eur J Med Chem 45:3895–3903

    Article  CAS  Google Scholar 

  80. Jongheon S, Jung-Rae R, Youngwan S et al (2001) Wondonins A and B, new bis(dihydroxystyryl)-imidazoles from a two-sponge association. Tetrahedron Lett 42:1965–1968

    Article  Google Scholar 

  81. Hyoung-Oh J, Younghwa K, Yoo-Wook K et al (2007) Wondonin, a novel compound, inhibits hypoxia-induced angiogenesis through hypoxia-inducible factor 1 alpha. FEBS Lett 581:4977–4982

    Article  CAS  Google Scholar 

  82. Lopes F, Rocha A, Pirraco A et al (2009) Anti-angiogenic effects of pterogynidine alkaloid isolated from Alchornea glandulosa. BMC Complement Altern Med 9:15. doi:10.1186/1472-6882-9-15

    Article  PubMed  CAS  Google Scholar 

  83. Ng JS (2010) Vinflunine: review of a new vinca alkaloid and its potential role in oncology. J Oncol Pharm Pract 17:209–224

    Article  PubMed  CAS  Google Scholar 

  84. Yang Z, Lu W, Ma X, Song D (2012) Bioassay-guided isolation of an alkaloid with antiangiogenic and antitumor activities from the extract of Fissistigma cavaleriei root. Phytomedicine 19:301–305

    Article  PubMed  CAS  Google Scholar 

  85. Hussain S, Slevin M, Ahmed N et al (2009) Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis. BMC Cell Biol 10:30. doi:10.1186/1471-2121-10-30

    Article  PubMed  CAS  Google Scholar 

  86. Kaneshiro T, Morioka T, Inamine M et al (2006) Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eur J Pharmacol 553:46–53

    Article  PubMed  CAS  Google Scholar 

  87. Suboj P, Babykutty S, Roshan D et al (2012) Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-jB. Eur J Pharm Sci 45:581–591

    Article  PubMed  CAS  Google Scholar 

  88. Shung-Haur Y, Jen-Kou L, Wei-Shone C, Jen-Hwey C (2003) Anti-angiogenic effect of silymarin on colon cancer LoVo cell line. J Surg Res 113:133–138

    Article  CAS  Google Scholar 

  89. Jing L, Xiao-Jun Y, Hai-Min C (2007) Fascaplysin, a selective CDK4 inhibitor, exhibit anti-­angiogenic activity in vitro and in vivo. Cancer Chemother Pharmacol 59:439–445

    Article  CAS  Google Scholar 

  90. Xiaojun Y, Haimin C, Xiaoling L et al (2011) Fascaplysin exert anti-tumor effects through apoptotic and anti-angiogenesis pathways in sarcoma mice model. Eur J Pharm Sci 43:251–259

    Article  CAS  Google Scholar 

  91. Zheng YL, Lu XL, Lin J et al (2010) Direct effects of fascaplysin on human umbilical vein endothelial cells attributing the anti-angiogenesis activity. Biomed Pharmacother 64:527–533

    Article  PubMed  CAS  Google Scholar 

  92. Hye JJ, Hyang BL, Chi-Hwan L, Chang-Jin K, Ho JK (2003) Cochlioquinone A1, a new anti-­angiogenic agent from Bipolaris zeicola. Bioorg Med Chem 11:4743–4747

    Article  CAS  Google Scholar 

  93. Taraboletti G, Poli M, Dossi R et al (2004) Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer 90:2418–2424

    PubMed  CAS  Google Scholar 

  94. Caers J, Menu E, Raeve DH et al (2008) Antitumour and antiangiogenic effects of Aplidin® in the 5TMM syngeneic models of multiple myeloma. Br J Cancer 98:1966–1974

    Article  PubMed  CAS  Google Scholar 

  95. Soto-Matos A, Szyldergemajn S, Extremera S et al (2011) Plitidepsin has a safe cardiac profile: a comprehensive analysis. Mar Drugs 9:1007–1023

    Article  PubMed  CAS  Google Scholar 

  96. Biscardi M, Caporale R, Balestri F (2005) VEGF inhibition and cytotoxic effect of aplidin in leukemia cell lines and cells from acute myeloid leukemia. Ann Oncol 16:1667–1674

    Article  PubMed  CAS  Google Scholar 

  97. Nakao Y, Narazaki G, Hoshino T et al (2008) Evaluation of antiangiogenic activity of azumamides by the in vitro vascular organization model using mouse induced pluripotent stem (iPS) cells. Bioorg Med Chem Lett 18:2982–2984

    Article  PubMed  CAS  Google Scholar 

  98. Ho JCK, Konerding MA, Gaumann A, Groth M, Liu WK (2004) Fungal polysaccharopeptide inhibits tumor angiogenesis and tumor growth in mice. Life Sci 75:1343–1356

    Article  PubMed  CAS  Google Scholar 

  99. Dias PF, Siqueira JM Jr, Vendruscolo LF et al (2005) Antiangiogenic and antitumoral properties of a polysaccharide isolated from the seaweed Sargassum stenophyllum. Cancer Chemother Pharmacol 56:436–446

    Article  PubMed  CAS  Google Scholar 

  100. Chih-Min Y, Yu-Jie Z, Ran-Juh W, Miao-Lin H (2009) Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights. J Ethnopharmacol 123:407–412

    Article  CAS  Google Scholar 

  101. Yi T, Yi Z, Sung-Gook C et al (2008) Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing VEGFR2 signaling. Cancer Res 68:1843–1850

    Article  PubMed  CAS  Google Scholar 

  102. Moss SJ, Carletti I, Olano C et al (2006) Biosynthesis of the angiogenesis inhibitor borrelidin: directed biosynthesis of novel analogues. Chem Commun 22:2341–2343

    Article  CAS  Google Scholar 

  103. Thippeswamy G, Sheela ML, Salimath BP (2008) Octacosanol isolated from Tinospora cordifolia down regulates VEGF gene expression by inhibiting nuclear translocation of NF-κB and its DNA binding activity. Eur J Pharmacol 588:141–150

    Article  PubMed  CAS  Google Scholar 

  104. Lee YS, Yang HO, Shin KH et al (2003) Suppression of tumor growth by a new glycosaminoglycan isolated from the African giant snail Achatina fulica. Eur J Pharmacol 465:191–198

    Article  PubMed  CAS  Google Scholar 

  105. Siegel L, Miternique-Grosse A, Griffon C et al (2008) Antiangiogenic properties of Lupulone, a bitter acid of hop cones. Anticancer Res 28:289–294

    PubMed  CAS  Google Scholar 

  106. Gianninia G, Pencoa S, Pisano C (2003) Chrysanthones, a new source of fungal metabolites with potential antitumor and antiangiogenesis properties. Fitoterapia 74:323–327

    Article  CAS  Google Scholar 

  107. Cordoba R, Tormo NS, Medarde AF, Plumet J (2007) Antiangiogenic versus cytotoxic activity in analogues of aeroplysinin-1. Bioorg Med Chem 15:5300–5315

    Article  PubMed  CAS  Google Scholar 

  108. Bargagna-Mohan P, Hamza A, Yang-eon K et al (2007) The tumor inhibitor and antiangiogenic agent Withaferin A targets the intermediate filament protein vimentin. Chem Biol 14:623–634

    Article  PubMed  CAS  Google Scholar 

  109. Miyazawa T, Inokuchi H, Hirokane H et al (2004) Anti-angiogenic potential of pocotrienol in vitro. Biochemistry 69:67–69

    PubMed  CAS  Google Scholar 

  110. Ashino H, Shimamura M, Nakajima H et al (2003) Novel function of ascorbic acid as an angiostatic factor. Angiogenesis 6:259–269

    Article  PubMed  CAS  Google Scholar 

  111. Yamashita T, Nakao Y, Matsunaga S et al (2009) A new antiangiogenic C24 oxylipin from the soft coral Sinularia numerosa. Bioorg Med Chem 17:2181–2184

    Article  PubMed  CAS  Google Scholar 

  112. Nguyen-Hai N, Yong K, Young-Jae Y et al (2002) Preliminary structure–antiangiogenic activity relationships of 4-senecioyloxymethyl-6,7-dimethoxycoumarin. Bioorg Med Chem Lett 12:2345–2348

    Article  Google Scholar 

  113. Zhang J, Zhang Y, Zhang S, Wang S, He L (2010) Discovery of novel taspine derivatives as antiangiogenic agents. Bioorg Med Chem Lett 20:718–721

    Article  PubMed  CAS  Google Scholar 

  114. Aokia K, Watanabe K, Sato M et al (2003) Effects of rhizoxin, a microbial angiogenesis inhibitor, on angiogenic endothelial cell functions. Eur J Pharmacol 459:131–138

    Article  Google Scholar 

  115. Li-Wha W, Yi-Ming C, Hsiao-Ching C et al (2004) Polyacetylenes function as anti-­angiogenic agents. Pharm Res 21:2112–2119

    Article  Google Scholar 

  116. Seokjoon L, Krishnamoorthy S, Woon-Seob S, Fang X, Qian W (2006) Synthesis and anti-­angiogenesis activity of coumarin derivatives. Bioorg Med Chem Lett 16:4596–4599

    Article  CAS  Google Scholar 

  117. Cui-cui S, Yu-sheng Z, Xia X et al (2011) Inhibition of angiogenesis involves in anticancer activity of riccardin D, a macrocyclic bisbibenzyl, in human lung carcinoma. Eur J Pharmacol 667:136–143

    Article  CAS  Google Scholar 

  118. Hayashi Y, Shoji M, Yamaguchi J et al (2002) Asymmetric total synthesis of (−)-azaspirene, a novel angiogenesis inhibitor. J Am Chem Soc 124:12078–12079

    Article  PubMed  CAS  Google Scholar 

  119. Asami Y, Kakeya H, Komi Y et al (2008) Azaspirene, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci 99:1853–1858

    Article  PubMed  CAS  Google Scholar 

  120. Ganesana P, Matsubarab K, Ohkubo T et al (2010) Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. Phytomedicine 17:1140–1144

    Article  CAS  Google Scholar 

  121. Wang S, Zheng Z, Weng Y et al (2004) Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts. Life Sci 74:2467–2478

    Article  PubMed  CAS  Google Scholar 

  122. Periyanayagam K, Umamaheswari B, Suseela L, Padmini M, Ismail M (2009) Evaluation of anti-angiogenic effect of the leaves of Justicia gendarussa (Burm. f) (Acanthaceae) by chorioallantoic membrane method. Am J Infect Dis 5:180–182

    Google Scholar 

  123. Hornick CA, Myers A, Sadowska-Krowicka H, Anthony CT, Woltering EA (2003) Inhibition of angiogenic initiation and disruption of newly established human vascular networks by juice from morinda citrifolia (noni). Angiogenesis 6:143–149

    Article  PubMed  Google Scholar 

  124. Yun SS, Sun-Hyoung K, Jae-Hoon S et al (2003) Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J Ethnopharmacol 88:113–116

    Article  Google Scholar 

  125. Sliva D, Jedinak A, Kawasaki J, Harvey K, Slivova V (2008) Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling. Br J Cancer 98:1348–1356

    Article  PubMed  CAS  Google Scholar 

  126. Bing-Nan Z, Carla S, Randall KJ, Mattern MR, Kingston DGI (2000) New cytotoxic manzamine alkaloids from a palaun sponge. Tetrahedron 56:5781–5784

    Article  Google Scholar 

  127. Yeon SL, Yoon HK, Eun KS et al (2010) Anti-angiogenic activity of methanol extract of Phellinus linteus and its fractions. J Ethnopharmacol 131:56–62

    Article  Google Scholar 

  128. Hyun-Joo J, Yun SS, Chang-Jin L, Eun-Hee P (2009) Anti-inflammatory, anti-angiogenic and anti-nociceptive activities of an ethanol extract of Salvia plebeian. J Ethnopharmacol 126:355–360

    Article  Google Scholar 

  129. Keshavarz M, Bidmeshkipour A, Mostafaie A et al (2011) Anti tumor activity of salvia officinalis is due to its anti-angiogenic, anti-migratory and anti-proliferative effects. Cell 12:477–482

    CAS  Google Scholar 

  130. Krenn L, Paper DH (2009) Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine 16:1083–1088

    Article  PubMed  CAS  Google Scholar 

  131. Kawaii S, Lansky EP (2004) Differentiation-promoting activity of pomegranate (Punica granatum) fruit extracts in HL-60 human promyelocytic leukemia cells. J Med Food 7:13–18

    Article  PubMed  CAS  Google Scholar 

  132. Eun-Kyoung A, Hye-Jin J, Eun-Ju L et al (2007) Anti-inflammatory and anti-angiogenic activities of Gastrodia elata blume. J Ethnopharmacol 110:476–482

    Article  Google Scholar 

  133. Suk HL, In SO, Young IK et al (2007) Phellinus extracts inhibit migration and matrix metalloproteinase secretion in porcine coronary artery endothelial cells. Biotechnol Bioprocess Eng 12:100–105

    Article  Google Scholar 

  134. Jae-Ho H, Jong-Deog K (2011) Inhibitory effects of Siegesbeckiae herba extract on angiogenesis and adipogenesis. Biotechnol Bioprocess Eng 16:144–152

    Article  CAS  Google Scholar 

  135. Carneiroa CS, Costa-Pintoa FA, Silva AP et al (2007) Pfaffia paniculata (Brazilian ginseng) methanolic extract reduces angiogenesis in mice. Exp Toxicol Pathol 58:427–431

    Article  Google Scholar 

  136. Sunila ES, Kuttan G (2006) Piper longum inhibits VEGF and proinflammatory cytokines and tumor-induced angiogenesis in C57BL/6 mice. Int Immunopharmacol 6:733–741

    Article  PubMed  CAS  Google Scholar 

  137. Al-Rawi SS, Ibrahim AH, Nik Ab Rahman NN et al (2011) The effect of supercritical fluid extraction parameters on the nutmeg oil extraction and its cytotoxic and antiangiogenic properties. Proc Food Sci 1:1946–1952

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Department of Biotechnology (DBT), Govt. of India for providing financial support and SPP School of Pharmacy & Technology Management, Mumbai, India for providing facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeranjaneyulu Addepalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gatne, D., Addepalli, V. (2013). Overview of Angiogenesis Inhibitors from Natural Sources. In: Mehta, J., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5857-9_26

Download citation

Publish with us

Policies and ethics