Skip to main content

Solar Radiation and Human Health

  • Chapter
  • First Online:
Environmental Toxicology

Abstract

Solar radiation has both direct and indirect impacts on human health. Only direct effects are described here. (Space is too limited to describe the indirect effects, which are numerous, complex and imbedded into important feedback mechanisms; the most important indirect effects for human health are on the availability and quality of food, effects on aquatic and terrestrial plants and ecosystems, deterioration in air quality, damage to materials, and energy-related issues that drive the world economy.)

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Action spectrum:

Weighting function describing the wavelength dependence of the biological response. Usually, it is normalized to 1 at a specific wavelength. In the UV, action spectra need to be known accurately over several orders of magnitude.

Direct spectral irradiance E λ,D :

Radiant energy dQ arriving from the disk of the sun per time interval dt, per wavelength interval d λ, and per area dA on a surface normal to the solar beam.

$$ {E_{{\lambda, D}}} = \frac{{dQ}}{{dtdAd\lambda }} $$

The angular field of view of an instrument measuring direct normal spectral irradiance must be sufficiently small to reduce uncertainties caused by circumscolar radiation. Recommendations for view-limiting geometries can be found in WMO [166].

Erythemally weighted irradiance E CIE :

Global spectral irradiance E G (λ) multiplied with the action spectrum for erythema, C(λ), proposed by CIE [1] and integrated over wavelengths λ:

$$ {E_{\text{CIE}}} =\int\limits_{{250{\text{nm}}}}^{{400{\text{nm}}}} {{E_G}(\lambda ) \cdot C(\lambda )d\lambda } $$
Exposure:

The spectral exposure \( E{x_{\lambda }} \) is the radiance L λ integrated over the relevant areas dA of the human body. In this context, the spectral radiance originates from the Sun’s direct beam and any scattered components.

$$ E{x_{\lambda }} = \int\limits_{t_1}^ {t_2} \left({\oint\limits_{(A)}} {L_\lambda} {(\epsilon, \varphi, t, \lambda)} \cdot dA \cos \epsilon \right)dt $$

where T = t 2t 1 is the exposure time. \( E{x_{\lambda }} (\lambda)\) may be weighted with a biological action spectrum and integrated over the wavelength to assess its biological impact. In this case the exposure is no longer a function of the wavelength and has the unit J.

Global spectral irradiance E λ,G :

Radiant energy dQ arriving per time interval dt, per wavelength interval d λ, and per area dA on a horizontally oriented surface from all parts of the sky above the horizontal, including the disk of the sun itself:

$$ {E_{{\lambda, G}}} = \frac{{dQ}}{{dtdAd\lambda }} = {E_{{\lambda, D}}} \cdot \cos (\vartheta ) + {E_{{\lambda, S}}} $$

where \( \vartheta \) is the solar zenith angle.

Spectral radiance L λ :

This can be defined in terms of emitted or received radiation. Here the latter applies. Radiant energy dQ per time interval dt, per wavelength interval d λ, per area dA, and per solid angle on a receiver oriented normal to the source.

$$ {L_{\lambda }} = \frac{{dQ}}{{dt{}d{A}d{\lambda}d\Omega }} $$
UV index:

A measure of solar UV radiation at the Earth’s surface that is used for public information. According to [2], the UV index is calculated considering the following items:

  1. 1.

    Calculation of the erythemally weighted irradiance E CIE (see above) by utilization of the CIE action spectrum [1] normalized to 1.0 at 298 nm.

  2. 2.

    A minimum requirement is to report the daily maximum UV index.

  3. 3.

    The index is expressed by multiplying the weighted irradiance in W m−2 by 40.0 (this leads to an open-ended index which is normally between 0 and 16 at sea level, but with larger values possible at high altitudes).

Remarks:

  1. (a)

    The definition of the UV index given above may be revised in the future.

  2. (b)

    According to the alternative definition given in [3], the UV index is calculated as the daily maximum erythemally weighted irradiance in W m−2, averaged over a duration of between 10 and 30 min and multiplied by 40.

UV-A radiation:

Electromagnetic radiation between 315 and 400 nm [4]. UV-A radiation is a summarizing term only and, unlike UVA irradiance, not a physical quantity.

UV-B radiation:

Electromagnetic radiation between 280 and 315 nm [4]. UV-B radiation is a summarizing term only and, unlike UVB irradiance, not a physical quantity.

Vitamin D:

Vitamin D is produced photochemically by UV exposure and conversion of 7-dehydrocholesterol into previtamin D3, which is rapidly converted to vitamin D3. The active form of vitamin D3, 1,25-dihydroxyvitamin D3, is a hormone.

Bibliography

  1. McKinlay AF, Diffey BL (1987) A reference action spectrum for ultra-violet induced erythema in human skin. In: Passchier WF, Bosnajakovic BFM (eds) Human exposure to ultraviolet radiation: risks and regulations. Elsevier, Amsterdam, pp 83–87

    Google Scholar 

  2. Kerr JB, Seckmeyer G et al Surface ultraviolet radiation: past, present and future. In: Chapter 7 of Scientific assessment of ozone depletion: 2006, Global ozone research and monitoring project, report no. 50. World Meteorological Organization, Geneva

    Google Scholar 

  3. ICNRP/UNEP (1995) Global solar UV Index. Oberschleissheim, Germany

    Google Scholar 

  4. CIE (1970) Internationales Wörterbuch der Lichttechnik, Commission International de l’Éclairage, Paris

    Google Scholar 

  5. WMO (2007) Scientific Assessment of Ozone Depletion: 2006, vol Global ozone research and monitoring project – report no. 50. (World Meteorological Organization), Geneva

    Google Scholar 

  6. Bais AF, Lubin D, Coauthors: Arola A, Bernhard G, Blumthaler M, Chubarova N, Erlick C, Gies HP, Krotkov N, Lantz K, Mayer B, McKenzie RL, Piacentini RD, Seckmeyer G, Slusser JR, Zerefos CS (2007) Surface ultraviolet radiation: past, present and future. In: Albritton DL, Ajavon AN, Watson RT (eds) Chapter 7 of WMO scientific assessment of ozone depletion: 2006, Global ozone research and monitoring project, report no. 55. World Meteorological Organization, Geneva, p 58

    Google Scholar 

  7. UNEP (2007) Environmental effects of ozone depletion and its interactions with climate change: 2006 assessment. Photochem Photobiol Sci 6:201–332

    Google Scholar 

  8. Holick MF (1994) McCollum award lecture, vitamin D: new horizons for the 21st cen-tury. Am J Clin Nutr 60:619–630

    PubMed  CAS  Google Scholar 

  9. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    PubMed  CAS  Google Scholar 

  10. Hewison M, Burke F, Evans KN, Lammas DA (2007) Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease. J Steroid Biochem Mol Biol 103:316–321

    PubMed  CAS  Google Scholar 

  11. Rao D, Raghuramulu N (1999) Is vitamin D redundant in an aquatic habitat? J Nutr Sci Vitaminol 45:1–8

    PubMed  CAS  Google Scholar 

  12. Bouillon R, Carmeliet G, Daci E, Segaert S, Verstuyf A (1998) Vitamin D metabolism and action. Osteoporos Int 8:S13–S19

    PubMed  CAS  Google Scholar 

  13. Hintzpeter B, Mensink G, Thierfelder W, Müller M, Scheidt-Nave C (2008) Vitamin D status and health correlates among German adults. Eur J Clin Nutr 62:1079–1089

    PubMed  CAS  Google Scholar 

  14. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84:18–28

    PubMed  CAS  Google Scholar 

  15. Gorham E, Mohr S, Garland F, Garland C (2009) Vitamin D for cancer prevention and survival. Clin Rev Bone Miner Metab 7:159–175

    CAS  Google Scholar 

  16. Mithal A, Wahl D, Bonjour J, Burckhardt P, Dawson-Hughes B, Eisman J, El-Hajj Fuleihan G, Josse R, Lips P, Morales-Torres J, IOF Committee of Scientific Advisors (CSA) Nutrition Working Group (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20:1807–1820

    PubMed  CAS  Google Scholar 

  17. Chris Power C, Hyppönen E (2007) Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and life-style predictors. Am J Clin Nutr 85:860–868

    PubMed  Google Scholar 

  18. Engelsen O, Brustad M, Aksnes L, Lund E (2005) Daily duration of vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness. Photochem Photobiol 81:1287–1290

    PubMed  CAS  Google Scholar 

  19. Genuis SJ, Schwalfenberg GK, Hiltz MN, Vaselenak SA (2009) Vitamin d status of clinical practice populations at higher latitudes: analysis and applications. Int J Environ Res Public Health 6:151–173

    PubMed  CAS  Google Scholar 

  20. Grant W (2004) Geographic variation of prostate cancer mortality rates in the United States: Implications for prostate cancer risk related to vitamin D. Int J Cancer 111:470–471

    PubMed  CAS  Google Scholar 

  21. Kimlin MG (2008) Geographic location and vitamin D synthesis. Mol Aspects Med 29(6):453–461

    PubMed  CAS  Google Scholar 

  22. van der Mei IAF, Ponsonby A-L, Engelsen O, Pasco JA, McGrath JJ, Eyles DW, Blizzard L, Dwyer T, Lucas R, Jones G (2007) The high prevalence of vitamin D insufficiency across Australian populations is only partly explained by season and latitude. Environ Health Perspect 115:1132–1139

    PubMed  Google Scholar 

  23. Bischoff-Ferrari H, Willett W, Wong J, Stuck A, Staehelin H, Orav E, Thoma A, Kiel D, Henschkowski J (2009) Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med 169:551–561

    PubMed  CAS  Google Scholar 

  24. Bischoff-Ferrari H, Dawson-Hughes B, Staehelin H, Orav J, Stuck A, Theiler R, Wong J, Egli A, Kiel D, Henschkowski J (2009) Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 339:b3692, <javascript:AL_get(this,%20'jour',%20'BMJ.');>

    PubMed  CAS  Google Scholar 

  25. Zittermann A (2003) Vitamin D in preventive medicine: are we ignoring the evidence? Br J Nutr 89:552–572

    PubMed  CAS  Google Scholar 

  26. WHO (2008) International agency for research on cancer. Vitamin D and cancer. IARC working group reports, vol 5. WHO Press, Geneva, p 148

    Google Scholar 

  27. Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP (2007) Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 85:1586–1591

    PubMed  CAS  Google Scholar 

  28. Mohr S, Garland C, Gorham E, Garland F (2008) The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 diabetes in 51 regions worldwide. Diabetologia 51:1391–1398

    PubMed  CAS  Google Scholar 

  29. Hyppönen E (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358:1500–1503

    PubMed  Google Scholar 

  30. Zipitis C, Akobeng A (2008) Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch Dis Child 93:512–517

    PubMed  CAS  Google Scholar 

  31. Pittas A, Lau J, Hu F, Dawson-Hughes B (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92:2017–2029

    PubMed  CAS  Google Scholar 

  32. Jorde R, Figenschau Y (2009) Supplementation with cholecalciferol does not improve glycemic control in diabtetic subjects with normal serum 25-hydroxyvitamin D levels. Eur J Nutr 48:349–354

    PubMed  CAS  Google Scholar 

  33. von Hurst P, Stonehouse W, Coad J (2009) Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient – a randomised, placebo-controlled trial. Br J Nutr 103(4):549–555

    Google Scholar 

  34. Zittermann A, Koerfer R (2008) Vitamin D in the prevention and treatment of coronary heart disease. Curr Opin Clin Nutr Metab Care 11:752–757

    PubMed  CAS  Google Scholar 

  35. Witham M, Nadir M, Struthers A (2009) Effect of vitamin D on blood pressure: a systematic review and meta-analysis. J Hypertens 27:1948–1954

    PubMed  CAS  Google Scholar 

  36. Pilz S, Dobnig H, Nijpels G, Heine R, Stehouwer C, Snijder M, van Dam R, Dekker J (2009) Vitamin D and mortality in older men and women. Clin Endocrinol 71:666–672

    CAS  Google Scholar 

  37. Wang T, Pencina M, Booth S, Jacques P, Ingelsson E, Lanier K, Benjamin E, D'Agostino R, Wolf M, Vasan R (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117:503–511

    PubMed  CAS  Google Scholar 

  38. Giovannucci E, Liu Y, Hollis B, Rimm E (2008) 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med 168:1174–1180

    PubMed  CAS  Google Scholar 

  39. Dobnig H, Pilz S, Scharnagl H, Renner W, Seelhorst U, Wellnitz B, Kinkeldei J, Boehm B, Weihrauch G, Maerz W (2008) Independent association of low serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels with all-cause and cardiovascular mortality. Arch Intern Med 168:1340–1349

    PubMed  CAS  Google Scholar 

  40. Ginde A, Scragg R, Schwartz R, Camargo C (2009) Prospective study of serum 25-Hydroxyvitamin D level, cardiovascular disease mortality, and all-cause mortality in older U.S. adults. J Am Geriatr Soc 57:1595–1603

    PubMed  Google Scholar 

  41. Melamed M, Michos E, Post W, Astor B (2008) 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med 168:1629–1637

    PubMed  Google Scholar 

  42. Zittermann A, Grant W (2009) 25-hydroxyvitamin D levels and all-cause mortality. Arch Intern Med 169:1075–1076

    PubMed  Google Scholar 

  43. Autier P, Gandini S (2007) Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch Intern Med 167:1730–1737

    PubMed  CAS  Google Scholar 

  44. Kuroda T, Shiraki M, Tanaka S, Ohta H (2009) Contributions of 25-hydroxyvitamin D, co-morbidities and bone mass to mortality in Japanese postmenopausal women. Bone 44:168–172

    PubMed  CAS  Google Scholar 

  45. Ng K, Meyerhardt J, Wu K, Feskanich D, Hollis B, Giovannucci E, Fuchs C (2008) Circulating 25-hydroxyvitamin d levels and survival in patients with colorectal cancer. J Clin Oncol 26:2984–2991

    PubMed  CAS  Google Scholar 

  46. McKenzie RL, Bodeker GE, Scott G, Slusser J (2006) Geographical differences in erythemally-weighted UV measured at mid-latitude USDA sites. Photochem Photobiol Sci 5:343–352

    PubMed  CAS  Google Scholar 

  47. Liley JB, McKenzie RL (2006) Where on Earth has the highest UV? In: UV Radiation and its effects: an update, 2006, pp. 26–37. http://www.niwa.co.nz/our-services/online-services/uv-and-ozone/workshops/2006/Liley_2.pdf

  48. Seckmeyer G, Glandorf M, Wichers C, McKenzie RL, Henriques D, Carvalho F, Webb AR, Siani AM, Bais A, Kjeldstad B, Brogniez C, Werle P, Koskela T, Lakkala K, Lenoble J, Groebner J, Slaper H, denOuter PN, Feister U (2008) Europe’s darker atmosphere in the UV-B. Photochem Photobiol Sci 7:925–930. doi:10.1039/b804109a

    PubMed  CAS  Google Scholar 

  49. McKenzie RL, Liley JB, Björn LO (2009) UV radiation: balancing risks and benefits. Photochem Photobiol 85:88–98

    PubMed  CAS  Google Scholar 

  50. Knuschke P, Unverricht I, Ott G (2007) “Baseline reference of solar UV exposures” to assess individual UV exposure levels in the population. In: Grobner J (ed) One century of UV radiation research. PMOD, Davos pp 127–128

    Google Scholar 

  51. Knuschke P, Unverricht I, Ott G, Jansen M (2007) Personenbezogene messung der UV-Exposition von Arbeitnehmern im freien, Bundesanstalt fur Arbeitsschutz und Arbeitsmedian (BAUA) report no. Dortmund/Berlin/Dresden, p 195. Available from: http://www.baua.de/cae/servlet/contentblob/699494/publicationFile/46848/F1777.pdf

  52. Jemal A, Ward E, Hao Y, Thun M (2005) Trends in the leading causes of death in the United States, 1970–2002. JAMA 294:1255–1259

    PubMed  CAS  Google Scholar 

  53. Katalinic A, Kunze U, Schafer T (2003) Epidemiology of cutaneous melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer). Br J Dermatol 149:1200–1206

    PubMed  CAS  Google Scholar 

  54. Diepgen TL, Mahler V (2002) The epidemiology of skin cancer. Br J Dermatol 146(Suppl 61):1–6

    PubMed  Google Scholar 

  55. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130

    PubMed  Google Scholar 

  56. Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A Jr, Kirkwood JM, McMasters KM, Mihm MF, Morton DL, Reintgen DS, Ross MI, Sober A, Thompson JA, Thompson JF (2001) Final version of the American joint committee on cancer staging system for cutaneous melanoma. J Clin Oncol 19:3635–3648

    PubMed  CAS  Google Scholar 

  57. Boyle P, Dore JF, Autier P, Ringborg U (2004) Cancer of the skin: a forgotten problem in Europe. Ann Oncol 15:5–6

    PubMed  Google Scholar 

  58. de Vries E, Bray FI, Coebergh JW, Parkin DM (2003) Changing epidemiology of malignant cutaneous melanoma in Europe 1953–1997: rising trends in incidence and mortality but recent stabilizations in western Europe and decreases in Scandinavia. Int J Cancer 107:119–126

    PubMed  Google Scholar 

  59. de Vries E, Coebergh JW (2004) Cutaneous malignant melanoma in Europe. Eur J Cancer 40:2355–2366

    PubMed  Google Scholar 

  60. Pesch B, Ranft U, Jakubis P, Nieuwenhuijsen MJ, Hergemoller A, Unfried K, Jakubis M, Miskovic P, Keegan T (2002) Environmental arsenic exposure from a coal-burning power plant as a potential risk factor for nonmelanoma skin carcinoma: results from a case-control study in the district of Prievidza, Slovakia. Am J Epidemiol 155:798–809

    PubMed  Google Scholar 

  61. Nindl I, Gottschling M, Stockfleth E (2007) Human papillomaviruses and non-melanoma skin cancer: basic virology and clinical manifestations. Dis Markers 23:247–259

    PubMed  CAS  Google Scholar 

  62. Lichter MD, Karagas MR, Mott LA, Spencer SK, Stukel TA, Greenberg ER, The New Hampshire Skin Cancer Study Group (2000) Therapeutic ionizing radiation and the incidence of basal cell carcinoma and squamous cell carcinoma. Arch Dermatol 136:1007–1011

    PubMed  CAS  Google Scholar 

  63. Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63:8–18

    PubMed  CAS  Google Scholar 

  64. Cleaver JE, Crowley E (2002) UV damage, DNA repair and skin carcinogenesis. Front Biosci 7:d1024–d1043

    PubMed  CAS  Google Scholar 

  65. de Gruijl FR, van Kranen HJ, Mullenders LH (2001) UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B 63:9–27

    Google Scholar 

  66. Madan V, Hoban P, Strange RC, Fryer AA, Lear JT (2006) Genetics and risk factors for basal cell carcinoma. Br J Dermatol 154(Suppl 1):5–7

    PubMed  CAS  Google Scholar 

  67. Norval M, Cullen AP, de Gruijl FR, Longstreth J, Takizawa Y, Lucas RM, Noonan FP, van der Leun JC (2007) The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem Photobiol Sci 6:232–251

    PubMed  CAS  Google Scholar 

  68. Ramos J, Villa J, Ruiz A, Armstrong R, Matta J (2004) UV dose determines key characteristics of nonmelanoma skin cancer. Cancer Epidemiol Biomark Prev 13:2006–2011

    CAS  Google Scholar 

  69. Abdel-Malek ZA, Knittel J, Kadekaro AL, Swope VB, Starner R (2008) The melanocortin 1 receptor and the UV response of human melanocytes–a shift in paradigm. Photochem Photobiol 84:501–508

    PubMed  CAS  Google Scholar 

  70. Besaratinia A, Pfeifer GP (2008) Sunlight ultraviolet irradiation and BRAF V600 mutagenesis in human melanoma. Hum Mutat 29:983–991

    PubMed  CAS  Google Scholar 

  71. Dulon M, Weichenthal M, Blettner M, Breitbart M, Hetzer M, Greinert R, Baumgardt-Elms C, Breitbart EW (2002) Sun exposure and number of nevi in 5- to 6-year-old European children. J Clin Epidemiol 55:1075–1081

    PubMed  Google Scholar 

  72. Harrison SL, MacLennan R, Buettner PG (2008) Sun exposure and the incidence of melanocytic nevi in young Australian children. Cancer Epidemiol Biomark Prev 17:2318–2324

    CAS  Google Scholar 

  73. Leiter U, Garbe C (2008) Epidemiology of melanoma and nonmelanoma skin cancer–the role of sunlight. Adv Exp Med Biol 624:89–103

    PubMed  Google Scholar 

  74. Thomas NE, Edmiston SN, Alexander A, Millikan RC, Groben PA, Hao H, Tolbert D, Berwick M, Busam K, Begg CB, Mattingly D, Ollila DW, Tse CK, Hummer A, Lee-Taylor J, Conway K (2007) Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma. Cancer Epidemiol Biomark Prev 16:991–997

    CAS  Google Scholar 

  75. El Ghissassi F, Baan R, Straif K, Grosse Y, Secretan B, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V (2009) A review of human carcinogens–part D: radiation. Lancet Oncol 10:751–752

    PubMed  Google Scholar 

  76. International Agency for Research on Cancer Working Group (2007) The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: a systematic review. Int J Cancer 120:116–1122

    Google Scholar 

  77. Rosenstein BS, Mitchell DL (1987) Action spectra for the induction of pyrimidine(6–4)pyrimidone photoproducts and cyclobutane pyrimidine dimers in normal human skin fibroblasts. Photochem Photobiol 45:775–780

    PubMed  CAS  Google Scholar 

  78. Cadet J, Anselmino C, Douki T, Voituriez L (1992) Photochemistry of nucleic acids in cells. J Photochem Photobiol B 15:277–298

    PubMed  CAS  Google Scholar 

  79. Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17

    PubMed  CAS  Google Scholar 

  80. Douki T, Court M, Sauvaigo S, Odin F, Cadet J (2000) Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J Biol Chem 275:11678–11685

    PubMed  CAS  Google Scholar 

  81. Mitchell DL, Brash DE, Nairn RS (1990) Rapid repair kinetics of pyrimidine(6–4)pyrimidone photoproducts in human cells are due to excision rather than conformational change. Nucleic Acids Res 18:963–971

    PubMed  CAS  Google Scholar 

  82. Mitchell DL (2006) Quantification of photoproducts in mammalian cell DNA using radioimmunoassay. Method Mol Biol 314:239–249

    CAS  Google Scholar 

  83. Greinert R, Boguhn O, Harder D, Breitbart EW, Mitchell DL, Volkmer B (2000) The dose dependence of cyclobutane dimer induction and repair in UVB-irradiated human keratinocytes. Photochem Photobiol 72:701–708

    PubMed  CAS  Google Scholar 

  84. Wang LE, Li C, Strom SS, Goldberg LH, Brewster A, Guo Z, Qiao Y, Clayman GL, Lee JJ, El Naggar AK, Prieto VG, Duvic M, Lippman SM, Weber RS, Kripke ML, Wei Q (2007) Repair capacity for UV light induced DNA damage associated with risk of nonmelanoma skin cancer and tumor progression. Clin Cancer Res 13:6532–6539

    PubMed  CAS  Google Scholar 

  85. Wang LE, Xiong P, Strom SS, Goldberg LH, Lee JE, Ross MI, Mansfield PF, Gershenwald JE, Prieto VG, Cormier JN, Duvic M, Clayman GL, Weber RS, Lippman SM, Amos CI, Spitz MR, Wei Q (2005) In vitro sensitivity to ultraviolet B light and skin cancer risk: a case-control analysis. J Natl Cancer Inst 97:1822–1831

    PubMed  CAS  Google Scholar 

  86. Wei Q, Lee JE, Gershenwald JE, Ross MI, Mansfield PF, Strom SS, Wang LE, Guo Z, Qiao Y, Amos CI, Spitz MR, Duvic M (2003) Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma. J Natl Cancer Inst 95:308–315

    PubMed  CAS  Google Scholar 

  87. Dumaz N, Drougard C, Sarasin A, Daya-Grosjean L (1993) Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proc Natl Acad Sci U S A 90:10529–10533

    PubMed  CAS  Google Scholar 

  88. Nakazawa H, English D, Randell PL, Nakazawa K, Martel N, Armstrong BK, Yamasaki H (1994) UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci U S A 91:360–364

    PubMed  CAS  Google Scholar 

  89. Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol 63:88–102

    CAS  Google Scholar 

  90. Sage E, Lamolet B, Brulay E, Moustacchi E, Chteauneuf A, Drobetsky EA (1996) Mutagenic specificity of solar UV light in nucleotide excision repair-deficient rodent cells. Proc Natl Acad Sci U S A 93:176–180

    PubMed  CAS  Google Scholar 

  91. Besaratinia A, Kim SI, Pfeifer GP (2008) Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells. FASEB J 22:2379–2392

    PubMed  CAS  Google Scholar 

  92. Ikehata H, Kudo H, Masuda T, Ono T (2003) UVA induces C–>T transitions at methyl-CpG-associated dipyrimidine sites in mouse skin epidermis more frequently than UVB. Mutagenesis 18:511–519

    PubMed  CAS  Google Scholar 

  93. Runger TM, Kappes UP (2008) Mechanisms of mutation formation with long-wave ultraviolet light (UVA). Photodermatol Photoimmunol Photomed 24:2–10

    PubMed  CAS  Google Scholar 

  94. Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci U S A 103:13765–13770

    PubMed  CAS  Google Scholar 

  95. Matsumura Y, Ananthaswamy HN (2002) Molecular mechanisms of photocarcinogenesis. Front Biosci 7:d765–d783

    PubMed  CAS  Google Scholar 

  96. Cruet-Hennequart S, Gallagher K, Sokol AM, Villalan S, Prendergast AM, Carty MP (2010) DNA Polymerase eta, a key protein in translesion synthesis in human cells. Subcell Biochem 50:189–209

    PubMed  CAS  Google Scholar 

  97. Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z (2008) Reduced efficiency and increased mutagenicity of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6–4 photoproduct, in human cells lacking DNA polymerase eta. DNA Repair Amst 7:1636–1646

    PubMed  CAS  Google Scholar 

  98. Hussain SP, Hollstein MH, Harris CC (2000) p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and human risk assessment. Ann NY Acad Sci 919:79–85

    PubMed  CAS  Google Scholar 

  99. Benjamin CL, Ullrich SE, Kripke ML, Ananthaswamy HN (2008) p53 tumor suppressor gene: a critical molecular target for UV induction and prevention of skin cancer. Photochem Photobiol 84:55–62

    PubMed  CAS  Google Scholar 

  100. Brash DE (2006) Roles of the transcription factor p53 in keratinocyte carcinomas. Br J Dermatol 154(Suppl 1):8–10

    PubMed  CAS  Google Scholar 

  101. Brash DE, Ziegler A, Jonason AS, Simon JA, Kunala S, Leffell DJ (1996) Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. J Investig Dermatol Symp Proc 1:136–142

    PubMed  CAS  Google Scholar 

  102. Nelson MA, Einspahr JG, Alberts DS, Balfour CA, Wymer JA, Welch KL, Salasche SJ, Bangert JL, Grogan TM, Bozzo PO (1994) Analysis of the p53 gene in human precancerous actinic keratosis lesions and squamous cell cancers. Cancer Lett 85:23–29

    PubMed  CAS  Google Scholar 

  103. Ziegler A, Leffell DJ, Kunala S, Sharma HW, Gailani M, Simon JA, Halperin AJ, Baden HP, Shapiro PE, Bale AE, Brash DE (1993) Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci U S A 90:4216–4220

    PubMed  CAS  Google Scholar 

  104. Brash DE (1997) Sunlight and the onset of skin cancer. Trends Genet 13:410–414

    PubMed  CAS  Google Scholar 

  105. Fusenig NE, Boukamp P (1998) Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Mol Carcinog 23:144–158

    PubMed  CAS  Google Scholar 

  106. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196

    PubMed  CAS  Google Scholar 

  107. Benjamin CL, Melnikova VO, Ananthaswamy HN (2008) P53 protein and pathogenesis of melanoma and nonmelanoma skin cancer. Adv Exp Med Biol 624:265–282

    PubMed  CAS  Google Scholar 

  108. Bosserhoff AK (2006) Novel biomarkers in malignant melanoma. Clin Chim Acta 367:28–35

    PubMed  CAS  Google Scholar 

  109. Daya-Grosjean L, Couve-Privat S (2005) Sonic hedgehog signaling in basal cell carcinomas. Cancer Lett 225:181–192

    PubMed  CAS  Google Scholar 

  110. Hussein MR (2005) Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol 32:191–205

    PubMed  Google Scholar 

  111. Lupi O (2007) Correlations between the sonic Hedgehog pathway and basal cell carcinoma. Int J Dermatol 46:1113–1117

    PubMed  CAS  Google Scholar 

  112. Sekulic A, Haluska P Jr, Miller AJ, Genebriera DL, Ejadi S, Pulido JS, Salomao DR, Thorland EC, Vile RG, Swanson DL, Pockaj BA, Laman SD, Pittelkow MR, Markovic SN (2008) Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin Proc 83:825–846

    PubMed  CAS  Google Scholar 

  113. Dahl C, Guldberg P (2007) The genome and epigenome of malignant melanoma. APMIS 115:1161–1176

    PubMed  CAS  Google Scholar 

  114. Faurschou A, Haedersdal M, Poulsen T, Wulf HC (2007) Squamous cell carcinoma induced by ultraviolet radiation originates from cells of the hair follicle in mice. Exp Dermatol 16:485–489

    PubMed  CAS  Google Scholar 

  115. Gerdes MJ, Yuspa SH (2005) The contribution of epidermal stem cells to skin cancer. Stem Cell Rev 1:225–231

    PubMed  CAS  Google Scholar 

  116. Greinert R (2009) Skin cancer: new markers for better prevention. Pathobiology 76:64–81

    PubMed  Google Scholar 

  117. Grichnik JM (2008) Melanoma, nevogenesis, and stem cell biology. J Invest Dermatol 128:2365–2380

    PubMed  CAS  Google Scholar 

  118. Schwabe M, Lubbert M (2007) Epigenetic lesions in malignant melanoma. Curr Pharm Biotechnol 8:382–387

    PubMed  CAS  Google Scholar 

  119. Yan X, Owens DM (2008) The skin: a home to multiple classes of epithelial progenitor cells. Stem Cell Rev 4:113–118

    PubMed  Google Scholar 

  120. Zabierowski SE, Herlyn M (2008) Melanoma stem cells: the dark seed of melanoma. J Clin Oncol 26:2890–2894

    PubMed  Google Scholar 

  121. Muller HK, Malley RC, McGee HM, Scott DK, Wozniak T, Woods GM (2008) Effect of UV radiation on the neonatal skin immune system- implications for melanoma. Photochem Photobiol 84:47–54

    PubMed  CAS  Google Scholar 

  122. Amerio P, Carbone A, Auriemma M, Varrati S, Tulli A (2009) UV induced skin immunosuppression. Anti-Infamm Anti-Allergy Agents Med Chem 8:3–13

    CAS  Google Scholar 

  123. Norval M (2000) The impact of ultraviolet radiation on immune response. Radiat Prot Dosim 91:51–56

    CAS  Google Scholar 

  124. Shimizu T, Streilein JW (1994) Local and systemic consequences of acute, low-dose ultraviolet B radiation are mediated by different immune regulatory mechanisms. Eur J Immunol 24:1765–1770

    PubMed  CAS  Google Scholar 

  125. Noonan FP, De Fabo EC (1992) Immunosuppression by ultraviolet B radiation: initiation by urocanic acid. Immunol Today 13:250–254

    PubMed  CAS  Google Scholar 

  126. Kaneko K, Smetana-Just U, Matsui M, Young AR, John S, Norval M, Walker SL (2008) cis-Urocanic acid initiates gene transcription in primary human keratinocytes. J Immunol 181:217–224

    PubMed  CAS  Google Scholar 

  127. Kurimoto I, Streilein JW (1992) cis-urocanic acid suppression of contact hypersensitivity induction is mediated via tumor necrosis factor-alpha. J Immunol 148:3072–3078

    PubMed  CAS  Google Scholar 

  128. Kondo S, Sauder DN, McKenzie RC, Fujisawa H, Shivji GM, El Ghorr A, Norval M (1995) The role of cis-urocanic acid in UVB-induced suppression of contact hypersensitivity. Immunol Lett 48:181–186

    PubMed  CAS  Google Scholar 

  129. el Ghorr AA, Norval M (1995) A monoclonal antibody to cis-urocanic acid prevents the ultraviolet-induced changes in Langerhans cells and delayed hypersensitivity responses in mice, although not preventing dendritic cell accumulation in lymph nodes draining the site of irradiation and contact hypersensitivity responses. J Invest Dermatol 105:264–268

    PubMed  Google Scholar 

  130. Kuchel JM, Barnetson RS, Halliday GM (2005) Cyclobutane pyrimidine dimer formation is a molecular trigger for solar-simulated ultraviolet radiation-induced suppression of memory immunity in humans. Photochem Photobiol Sci 4:577–582

    PubMed  CAS  Google Scholar 

  131. Yarosh DB (2002) Enhanced DNA repair of cyclobutane pyrimidine dimers changes the biological response to UV-B radiation. Mutat Res 509:221–226

    PubMed  CAS  Google Scholar 

  132. Vink AA, Strickland FM, Bucana C, Cox PA, Roza L, Yarosh DB, Kripke ML (1996) Localization of DNA damage and its role in altered antigen-presenting cell function in ultraviolet-irradiated mice. J Exp Med 183:1491–1500

    PubMed  CAS  Google Scholar 

  133. Tommasi S, Swiderski PM, Tu Y, Kaplan BE, Pfeifer GP (1996) Inhibition of transcription factor binding by ultraviolet-induced pyrimidine dimers. Biochemistry 35:15693–15703

    PubMed  CAS  Google Scholar 

  134. Kripke ML, Cox PA, Alas LG, Yarosh DB (1992) Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc Natl Acad Sci U S A 89:7516–7520

    PubMed  CAS  Google Scholar 

  135. Donawho CK, Muller HK, Bucana CD, Kripke ML (1996) Enhanced growth of murine melanoma in ultraviolet-irradiated skin is associated with local inhibition of immune effector mechanisms. J Immunol 157:781–786

    PubMed  CAS  Google Scholar 

  136. Ullrich SE (1995) Modulation of immunity by ultraviolet radiation: key effects on antigen presentation. J Invest Dermatol 105:30S–36S

    PubMed  CAS  Google Scholar 

  137. Simon JC, Tigelaar RE, Bergstresser PR, Edelbaum D, Cruz PD (1991) Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells. Induction of specific clonal anergy in CD4+ T helper 1 cells. J Immunol 146:485–491

    PubMed  CAS  Google Scholar 

  138. Shreedhar V, Giese T, Sung VW, Ullrich SE (1998) A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression. J Immunol 160:3783–3789

    PubMed  CAS  Google Scholar 

  139. Ullrich SE (1996) Does exposure to UV radiation induce a shift to a Th-2-like immune reaction? Photochem Photobiol 64:254–258

    PubMed  CAS  Google Scholar 

  140. Clement-Lacroix P, Michel L, Moysan A, Morliere P, Dubertret L (1996) UVA-induced immune suppression in human skin: protective effect of vitamin E in human epidermal cells in vitro. Br J Dermatol 134:77–84

    PubMed  CAS  Google Scholar 

  141. Rana S, Rogers LJ, Halliday GM (2010) Immunosuppressive ultraviolet-A radiation inhibits the development of skin memory CD8 T cells. Photochem Photobiol Sci 9:25–30

    PubMed  CAS  Google Scholar 

  142. Seite S, Zucchi H, Moyal D, Tison S, Compan D, Christiaens F, Gueniche A, Fourtanier A (2003) Alterations in human epidermal Langerhans cells by ultraviolet radiation: quantitative and morphological study. Br J Dermatol 148:291–299

    PubMed  CAS  Google Scholar 

  143. Stoebner PE, Poosti R, Djoukelfit K, Martinez J, Meunier L (2007) Decreased human epidermal antigen-presenting cell activity after ultraviolet A exposure: dose-response effects and protection by sunscreens. Br J Dermatol 156:1315–1320

    PubMed  CAS  Google Scholar 

  144. Christophers E (2001) Psoriasis–epidemiology and clinical spectrum. Clin Exp Dermatol 26:314–320

    PubMed  CAS  Google Scholar 

  145. Krueger JG (2002) The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol 46:1–23

    PubMed  Google Scholar 

  146. Traub M, Marshall K (2007) Psoriasis–pathophysiology, conventional, and alternative approaches to treatment. Altern Med Rev 12:319–330

    PubMed  Google Scholar 

  147. Barker JN (2001) Genetic aspects of psoriasis. Clin Exp Dermatol 26:321–325

    PubMed  CAS  Google Scholar 

  148. Valdimarsson H (2007) The genetic basis of psoriasis. Clin Dermatol 25:563–567

    PubMed  Google Scholar 

  149. Gambichler T, Breuckmann F, Boms S, Altmeyer P, Kreuter A (2005) Narrowband UVB phototherapy in skin conditions beyond psoriasis. J Am Acad Dermatol 52:660–670

    PubMed  Google Scholar 

  150. Lim JL, Stern RS (2005) High levels of ultraviolet B exposure increase the risk of non-melanoma skin cancer in psoralen and ultraviolet A-treated patients. J Invest Dermatol 124:505–513

    PubMed  CAS  Google Scholar 

  151. Nijsten TE, Stern RS (2003) The increased risk of skin cancer is persistent after discontinuation of psoralen+ultraviolet A: a cohort study. J Invest Dermatol 121:252–258

    PubMed  CAS  Google Scholar 

  152. Stern RS, Bolshakov S, Nataraj AJ, Ananthaswamy HN (2002) p53 mutation in nonmelanoma skin cancers occurring in psoralen ultraviolet a-treated patients: evidence for heterogeneity and field cancerization. J Invest Dermatol 119:522–526

    PubMed  CAS  Google Scholar 

  153. Stern RS, Liebman EJ, Vakeva L (1998) Oral psoralen and ultraviolet-A light (PUVA) treatment of psoriasis and persistent risk of nonmelanoma skin cancer. PUVA follow-up study. J Natl Cancer Inst 90:1278–1284

    PubMed  CAS  Google Scholar 

  154. Peritz AE, Gasparro FP (1999) Psoriasis, PUVA, and skin cancer–molecular epidemiology: the curious question of T–>A transversions. J Investig Dermatol Symp Proc 4:11–16

    PubMed  CAS  Google Scholar 

  155. Wuttke S, Seckmeyer G, Konig-Langlo G (2006) Measurements of spectral snow albedo at Neumayer, Antarctica. Annles Geophysicae 24:7–21

    CAS  Google Scholar 

  156. DIN (2008) German Institute for Normalisation Report – Several papers, ISBN 978-3-410-16938. In: 2. DIN Expertenforum, Wirkung des Lichts auf Menschen, Beuth, Berlin, p 43

    Google Scholar 

  157. Schmidt C, Collette F, Leclercq Y, Sterpenich V, Vandewalle G, Berthomier P, Berthomier C, Phillips C, Tinguely G, Darsaud A, Gais S, Schabus M, Desseilles M, Dang-Vu TT, Salmon E, Balteau E, Degueldre C, Luxen A, Maquet P, Cajochen C, Peigneux P (2009) Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area Science 465:516–519

    Google Scholar 

  158. Kligman LH (1982) Intensification of ultraviolet-induced dermal damage by infrared radiation. Arch Dermatol Res 272:229–267

    PubMed  CAS  Google Scholar 

  159. Zastrow L, Groth N (2008) The missing link – light-induced (280–1600 nm) free radical formation in human skin. Skin Pharmacol Physiol 22:31–44

    PubMed  Google Scholar 

  160. Gebbers N, Hirt-Burri N (2007) Water-filtered infrared-a radiation (wira) is not implicated in cellular degeneration of human skin. GMS Ger Med Sci 5:1–14

    Google Scholar 

  161. Menendez S, Coulomb B (1998) Non-coherent near infrared radiation protects normal human dermal fibroplasts from solar ultraviolet toxicity. J Investig Dermatol 111:629–633

    Google Scholar 

  162. Schieke SM, Stege H (2002) Infrared-a radiation-induced matrix metalloproteinase 1 expression is mediated through exracellular signal-regulated kinase 1/2 activation in human dermal fibroblasts. J Investig Dermatol 119:1323–1329

    PubMed  CAS  Google Scholar 

  163. Jantschitsch C, Majewski S (2009) Infrared radiation confers resistanse to uv-induces apoptosus via reduction of DNA damage and upregulation of antiapoptotic proteins. Soc Investig Dermatol 129:1271–1279

    CAS  Google Scholar 

  164. Modell J, Rosenthal N, Harriett A, Krishen A, Asgharian A, Foster V, Metz A, Rockett C, Wightman D (2005) Seasonal affective disorder and its prevention by anticipatory treatment with bupropion XL biological psychiatry. Biol Psychiatry 58:658–667

    PubMed  CAS  Google Scholar 

  165. Pissulla D, Seckmeyer G, Cordero RR, Blumthaler M, Schallhart B, Webb A, Kifte ASR, Bais AF, Kouremeti N, Cede A, Herman J, Kowalewski M (2009) Comparison of different calibration methods to derive spectral radiance as a function of incident and azimuth angle. Photochem Photobiol Sci 8:516–527

    PubMed  CAS  Google Scholar 

  166. WMO (1983) Guide to meteorological instruments and methods of observation (Fifth edn), World Meteorological Organization, Report No. 8, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Seckmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seckmeyer, G., Zittermann, A., McKenzie, R., Greinert, R. (2013). Solar Radiation and Human Health. In: Laws, E. (eds) Environmental Toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5764-0_19

Download citation

Publish with us

Policies and ethics