Skip to main content

Characterization of MSCs: From Early Studies to the Present

  • Chapter
  • First Online:
Mesenchymal Stromal Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1460 Accesses

Abstract

Studies on mesenchymal stem cells/mesenchymal stromal cells (MSCs) have increased dramatically in the last 10 years, and many clinical trials are underway to take advantage of their properties. Early studies on MSC-like cells were performed in laboratories studying either bone repair or hematopoiesis, but the overlap in these studies was not broadly appreciated. The relationship between MSCs, osteoblastic progenitor cells, and the bone marrow stromal cells that provide support for hematopoietic stem cells has emerged. A variety of assays, in vitro and in vivo, allowed for a broader understanding of the MSCs and their characteristics. The MSCs from different animal species have properties similar to those from man, and this has allowed for many animal studies that provided preclinical support for human clinical trials with MSCs. While there are many established characteristics, new understanding of the MSC and the interaction of MSCs with other cell types, including HSCs and those of the immune system, will continue to reveal new and useful understanding of MSC properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCulloch EA, Till JE (1960) The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 13:115–125

    Article  PubMed  CAS  Google Scholar 

  2. Till JE, McCulloch EA, Siminovitch L (1964) A stochastic model of stem cell proliferation based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51:29–36

    Article  PubMed  CAS  Google Scholar 

  3. Urist MR, McLean FC (1953) The local physiology of bone repair with particular reference to the process of new bone formation by induction. Am J Surg 85:444–449

    Article  PubMed  CAS  Google Scholar 

  4. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    PubMed  CAS  Google Scholar 

  5. Friedenstein AJ, Gorskaja JF, Kulagina NN (1974) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    Google Scholar 

  6. Luria EA, Owen ME, Friedenstein AJ, Morris JF, Kuznetsow SA (1987) Bone formation in organ cultures of bone marrow. Cell Tissue Res 248:449–454

    Article  PubMed  CAS  Google Scholar 

  7. Bab I, Ashton BA, Gazit D, Marx G, Williamson MC, Owen ME (1986) Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci 84:139–151

    PubMed  CAS  Google Scholar 

  8. Owen ME, Cave J, Joyner CJ (1987) Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci 87:731–738

    PubMed  Google Scholar 

  9. Owen ME, Friedenstein AJ (1988) Stromal stem cells: marrow derived osteogenic precursors. Ciba Found Symp 136:42–60

    PubMed  CAS  Google Scholar 

  10. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  11. Lennon DP, Haynesworth SE, Bruder SP, Jaiswal N, Caplan AI (1996) Human and animal mesenchymal progenitor cells from bone marrow: identification of serum for optimal selection and proliferation. In Vitro Cell Dev Biol 32:602–611

    Article  Google Scholar 

  12. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88

    Article  PubMed  CAS  Google Scholar 

  13. Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69–80

    Article  PubMed  CAS  Google Scholar 

  14. Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J (1999) The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun 265:134–139

    Article  PubMed  CAS  Google Scholar 

  15. Barry F, Boynton R, Murphy M, Haynesworth S, Zaia J (2001) The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun 289:519–524

    Article  PubMed  CAS  Google Scholar 

  16. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  PubMed  CAS  Google Scholar 

  17. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 6:295–312

    Article  Google Scholar 

  18. Pittenger MF (1998) Adipogenic differentiation of human mesenchymal stem cells. US Patent #5,827,740. US Patent Office

    Google Scholar 

  19. Green H, Kehinde O (1975) An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5:19–27

    Article  PubMed  CAS  Google Scholar 

  20. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  21. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428

    Article  PubMed  CAS  Google Scholar 

  22. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  PubMed  CAS  Google Scholar 

  23. Ballock RT, Reddi AH (1994) Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J Cell Biol 126:1311–1318

    Article  PubMed  CAS  Google Scholar 

  24. Pittenger MF, Mackay AM and Beck SC (1996) Human mesenchymal stem cells can be directed into chondrocytes, adipocytes and osteoblasts. Mol Bio Cell Dec 7:305a 1172

    Google Scholar 

  25. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16:557–564

    PubMed  CAS  Google Scholar 

  26. Koç ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    PubMed  Google Scholar 

  27. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ, MCintosh KR. T cell responses to allogeneic human mesenchymel stem cell: immunogenicity, tolerance, and suppression. J Biomed Sci. 2005;12(1):47–57

    Article  PubMed  Google Scholar 

  28. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398

    Article  PubMed  Google Scholar 

  29. Koç ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2003) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222

    Article  Google Scholar 

  30. Grigoriadis AE, Heersche J, Aubin JE (1990) Continuously growing bipotential and monopotential myogenic, adipogenic and chondrogenic subclones isolated from the multipotential RCJ3.1 clonal cell line. Dev Biol 142:313–318

    Article  PubMed  CAS  Google Scholar 

  31. LeBoy PS, Beresford J, Devlin C, Owen M (1991) Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol 146:370–378

    Article  PubMed  CAS  Google Scholar 

  32. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351

    PubMed  CAS  Google Scholar 

  33. Kadiyala S, Jaiswal N, Bruder SP (1997) Culture-expanded bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng 3:173–185

    Article  Google Scholar 

  34. Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77:192–204

    Article  PubMed  CAS  Google Scholar 

  35. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI et al (1994) Mesenchymal cell based repair of large, full thickness defects of articular cartilage. J Bone Joint Surg Am 76:579–592

    PubMed  CAS  Google Scholar 

  36. Grande DA, Southerland SS, Manji R, Pate DW, Schwartz RE, Lucas PA (1995) Repair of articular defects using mesenchymal stem cells. Tissue Eng 1:345–353

    Article  PubMed  CAS  Google Scholar 

  37. Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413

    Article  PubMed  CAS  Google Scholar 

  38. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134

    Article  PubMed  CAS  Google Scholar 

  39. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461

    Article  PubMed  Google Scholar 

  40. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    Article  PubMed  Google Scholar 

  41. Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925

    Article  PubMed  Google Scholar 

  42. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JW (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  PubMed  Google Scholar 

  43. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479

    Article  PubMed  CAS  Google Scholar 

  44. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122

    Article  PubMed  Google Scholar 

  45. Schuleri KH, Amado LC, Boyle AJ, Centola M, Saliaris AP, Gutman MR et al (2008) Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol 294:H2002–H2011

    Article  PubMed  CAS  Google Scholar 

  46. Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D et al (2009) Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic ­cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA 106:14022–14027

    Article  PubMed  CAS  Google Scholar 

  47. Mahmud N, Pang W, Cobbs C, Alur P, Borneman J, Dodds R et al (2004) Studies of the route of administration and role of conditioning with radiation on unrelated allogeneic mismatched mesenchymal stem cell engraftment in a nonhuman primate model. Exp Hematol 32:494–501

    Article  PubMed  CAS  Google Scholar 

  48. Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J et al (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med 5:1028–1038

    Article  PubMed  Google Scholar 

  49. Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A et al (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24:1020–1029

    Article  PubMed  Google Scholar 

  50. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999–3001

    Article  PubMed  CAS  Google Scholar 

  51. Bartholomew A, Patil S, Mackay A, Nelson M, Buyaner D, Hardy W et al (2001) Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther 12:1527–1541

    Article  PubMed  CAS  Google Scholar 

  52. Saito T, Dennis JE, Lennon DP, Young RG, Caplan AI (1995) Myogenic expression of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo. Tissue Eng 1:327–343

    Article  PubMed  CAS  Google Scholar 

  53. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD et al (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage and lung in irradiated mice. Proc Natl Acad Sci USA 92:4857–4861

    Article  PubMed  CAS  Google Scholar 

  54. Dennis JE, Merriam A, Awadalla A, Yoo JU, Johnstone B, Caplan AI (1999) A quadripotent mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 14:700–709

    Article  PubMed  CAS  Google Scholar 

  55. Short B, Brouard N, Driessen R, Simmons PJ (2001) Prospective isolation of stromal progenitor cells from mouse BM. Cytotherapy 3:407–408

    Article  PubMed  CAS  Google Scholar 

  56. Phinney DG, Kopen G, Isaacson RL, Prockop D (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth and ­differentiation. J Cell Biochem 72:570–585

    Article  PubMed  CAS  Google Scholar 

  57. Carvalho PP, Wu X, Yu G, Dias IR, Gomes ME, Reis RL et al (2011) The effect of storage time on adipose-derived stem cell recovery from human lipoaspirates. Cells Tissues Organs 194(6):494–500

    Article  PubMed  Google Scholar 

  58. Halvorsen YC, Wilkison WO, Gimble JM (2000) Adipose-derived stromal cells–their utility and potential in bone formation. Int J Obes Relat Metab Disord 24(Suppl 4):S41–S44

    Article  PubMed  CAS  Google Scholar 

  59. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  60. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22:649–658

    Article  PubMed  CAS  Google Scholar 

  61. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345

    Article  Google Scholar 

  62. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    Article  PubMed  Google Scholar 

  63. Campagnoli C, Roberts IA, Kumar S, Choolani M, Bennett PR, Letsky E et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    Article  PubMed  CAS  Google Scholar 

  64. Panepucci RA, Siufi JL, Silva WA, Proto-Siquiera R, Neder L, Orellana M et al (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22:1263–1278

    Article  PubMed  CAS  Google Scholar 

  65. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  PubMed  CAS  Google Scholar 

  66. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  PubMed  CAS  Google Scholar 

  67. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    Article  PubMed  CAS  Google Scholar 

  68. Pittenger MP, Mbalaviele G, Black M, Mosca JD, Marshak DR (2001) Mesenchymal stem cells. In: Koller MR, Palsson BO, Masters JRW (eds) Human cell culture, vol 5, Primary mesenchymal cells. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  69. Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC et al (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36:642–654

    Article  PubMed  CAS  Google Scholar 

  70. Jones E, English A, Churchman SM, Kouroupis D, Boxall SA, Kinsey S et al (2010) ­Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells. Arthritis Rheum 62:1944–1954

    Article  PubMed  CAS  Google Scholar 

  71. Quesenberry PJ, Colvin G, Dooner G, Dooner M, Aliotta JM, Johnson K (2007) The stem cell continuum: cell cycle, injury, and phenotype lability. Ann N Y Acad Sci 1106:20–29

    Article  PubMed  Google Scholar 

  72. Huang S (2010) Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules. PLoS Biol 8:e1000380

    Article  PubMed  Google Scholar 

  73. Wang J, Xu L, Wang E, Huang S (2010) The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys J 7(99):29–39

    Article  Google Scholar 

  74. Huang S (2009) Reprogramming cell fates: reconciling rarity with robustness. Bioessays 31:546–560

    Article  PubMed  CAS  Google Scholar 

  75. Trimain N, Korkko J, Ibberson D, Kopan GC, DiGirolamo C, Phiney DG. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stems Cells. 2001;19(5):408–18

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Pittenger Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pittenger, M.F. (2013). Characterization of MSCs: From Early Studies to the Present. In: Hematti, P., Keating, A. (eds) Mesenchymal Stromal Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5711-4_4

Download citation

Publish with us

Policies and ethics