Skip to main content

MSC for Ex Vivo Expansion of Umbilical Cord Blood Cells

  • Chapter
  • First Online:
Mesenchymal Stromal Cells

Abstract

Ex vivo expansion of umbilical cord blood (UCB) has been proposed to increase the cell dose to enhance engraftment of UCB products used as a source of hematopoietic stem cell (HSC) transplant for hematological malignancies in adults. UCB offers several potential advantages over bone marrow from unrelated donors, including its ready availability, allowance of higher HLA disparity, and lower incidence of graft-versus-host disease which makes it an attractive source especially for minority populations. The major limitation to a wider use of this source of HSC is the relatively low number of progenitor cells in the graft. For this reason, adult UCB transplantation is usually associated with delayed engraftment and increased rates of infectious complications. UCB ex vivo expansion holds the promise of delivering higher cell doses and improved outcomes. Current approaches for expansion of UCB products involve initial isolation of hematopoietic stem and progenitor cells based upon expression of CD34 or CD133 prior to culture; however, this process results in variable recovery of CD34+ cells and variable purity resulting in poor expansion. We have developed methods for the expansion of UCB products which eliminate the requirement for positive selection and enable the expansion of mononuclear cells by coculture on mesenchymal stromal cells. Here we discuss different methods of expansion, their shortcomings, and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M et al (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA 89:4109–4113

    Article  PubMed  CAS  Google Scholar 

  2. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC et al (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 335:157–166

    Article  PubMed  CAS  Google Scholar 

  3. Broxmeyer HE, Gluckman E, Auerbach A, Douglas GW, Friedman H, Cooper S et al (1990) Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning 8(Suppl 1):76–89

    Article  PubMed  Google Scholar 

  4. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D et al (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 86:3828–3832

    Article  PubMed  CAS  Google Scholar 

  5. Stanevsky A, Goldstein G, Nagler A (2009) Umbilical cord blood transplantation: pros, cons and beyond. Blood Rev 23:199–204

    Article  PubMed  Google Scholar 

  6. Goldstein G, Toren A, Nagler A (2007) Transplantation and other uses of human umbilical cord blood and stem cells. Curr Pharm Des 13:1363–1373

    Article  PubMed  CAS  Google Scholar 

  7. Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE et al (2001) Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 344:1815–1822

    Article  PubMed  CAS  Google Scholar 

  8. Migliaccio AR, Adamson JW, Stevens CE, Dobrila NL, Carrier CM, Rubinstein P (2000) Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood 96:2717–2722

    PubMed  CAS  Google Scholar 

  9. Gluckman E, Rocha V, Chevret S (2001) Results of unrelated umbilical cord blood hematopoietic stem cell transplantation. Rev Clin Exp Hematol 5:87–99

    Article  PubMed  CAS  Google Scholar 

  10. Gluckman E, Rocha V, Arcese W, Michel G, Sanz G, Chan KW et al (2004) Factors associated with outcomes of unrelated cord blood transplant: guidelines for donor choice. Exp Hematol 32:397–407

    Article  PubMed  CAS  Google Scholar 

  11. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR et al (1998) Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 339:1565–1577

    Article  PubMed  CAS  Google Scholar 

  12. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R et al (1997) Outcome of cord-blood transplantation from related and unrelated donors. Eurocord transplant group and the European blood and marrow transplantation group. N Engl J Med 337:373–381

    Article  PubMed  CAS  Google Scholar 

  13. Kurtzberg J, Prasad VK, Carter SL, Wagner JE, Baxter-Lowe LA, Wall D et al (2008) Results of the cord blood transplantation study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood 112:4318–4327

    Article  PubMed  CAS  Google Scholar 

  14. Martin PL, Carter SL, Kernan NA, Sahdev I, Wall D, Pietryga D et al (2006) Results of the cord blood transplantation study (COBLT): outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol Blood Marrow Transplant 12:184–194

    Article  PubMed  Google Scholar 

  15. Sawczyn KK, Quinones R, Malcolm J, Foreman N, Garrington T, Gore L et al (2005) Cord blood transplant in childhood ALL. Pediatr Blood Cancer 45:964–970

    Article  PubMed  Google Scholar 

  16. Szabolcs P, Niedzwiecki D (2007) Immune reconstitution after unrelated cord blood transplantation. Cytotherapy 9:111–122

    Article  PubMed  CAS  Google Scholar 

  17. Thomson BG, Robertson KA, Gowan D, Heilman D, Broxmeyer HE, Emanuel D et al (2000) Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 96:2703–2711

    PubMed  CAS  Google Scholar 

  18. Wagner JE, Barker JN, Defor TE, Baker KS, Blazar BR, Eide C et al (2002) Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 100:1611–1618

    PubMed  CAS  Google Scholar 

  19. Weinreb S, Delgado JC, Clavijo OP, Yunis EJ, Bayer-Zwirello L, Polansky L et al (1998) Transplantation of unrelated cord blood cells. Bone Marrow Transplant 22:193–196

    Article  PubMed  CAS  Google Scholar 

  20. Barker JN, Weisdorf DJ, Wagner JE (2001) Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N Engl J Med 344:1870–1871

    Article  PubMed  CAS  Google Scholar 

  21. Barker JN, Weisdorf DJ, Defor TE, Blazar BR, Miller JS, Wagner JE (2003) Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced-intensity conditioning. Blood 102:1915–1919

    Article  PubMed  CAS  Google Scholar 

  22. de Lima M, St John LS, Wieder ED, Lee MS, McMannis J, Karandish S et al (2002) Double-chimaerism after transplantation of two human leucocyte antigen mismatched, unrelated cord blood units. Br J Haematol 119:773–776

    Article  PubMed  Google Scholar 

  23. Fernandez MN, Regidor C, Cabrera R, Garcia-Marco J, Briz M, Fores R et al (2001) Cord blood transplants: early recovery of neutrophils from co-transplanted sibling haploidentical progenitor cells and lack of engraftment of cultured cord blood cells, as ascertained by analysis of DNA polymorphisms. Bone Marrow Transplant 28:355–363

    Article  PubMed  CAS  Google Scholar 

  24. de Lima M, McMannis J, Saliba R, Worth L, Kebriaei P, Popat U et al (2008) Double cord blood transplantation (CBT) with and without Ex-vivo expansion (EXP): a randomized, controlled study. Blood 112:154

    Google Scholar 

  25. Holyoake TL, Alcorn MJ, Richmond L, Farrell E, Pearson C, Green R et al (1997) CD34 Positive PBPC expanded ex vivo may not provide durable engraftment following myeloablative chemoradiotherapy regimens. Bone Marrow Transplant 19:1095–1101

    Article  PubMed  CAS  Google Scholar 

  26. McNiece IK, Almeida-Porada G, Shpall EJ, Zanjani E (2002) Ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential. Exp Hematol 30:612–616

    Article  PubMed  Google Scholar 

  27. Pecora AL, Stiff P, Jennis A, Goldberg S, Rosenbluth R, Price P et al (2000) Prompt and durable engraftment in two older adult patients with high risk chronic myelogenous leukemia (CML) using ex vivo expanded and unmanipulated unrelated umbilical cord blood. Bone Marrow Transplant 25:797–799

    Article  PubMed  CAS  Google Scholar 

  28. Jaroscak J, Goltry K, Smith A, Waters-Pick B, Martin PL, Driscoll TA et al (2003) Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell system. Blood 101:5061–5067

    Article  PubMed  CAS  Google Scholar 

  29. Pecora AL, Stiff P, LeMaistre CF, Bayer R, Bachier C, Goldberg SL et al (2001) A phase II trial evaluating the safety and effectiveness of the AastromReplicell system for augmentation of low-dose blood stem cell transplantation. Bone Marrow Transplant 28:295–303

    Article  PubMed  CAS  Google Scholar 

  30. de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS et al (2008) Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant 41:771–778

    Article  PubMed  Google Scholar 

  31. Briddell RA, Kern BP, Zilm KL, Stoney GB, McNiece IK (1997) Purification of CD34+ cells is essential for optimal ex vivo expansion of umbilical cord blood cells. J Hematother 6:145–150

    Article  PubMed  CAS  Google Scholar 

  32. McNiece I, Briddell R, Stoney G, Kern B, Zilm K, Recktenwald D et al (1997) Large-scale isolation of CD34+ cells using the amgen cell selection device results in high levels of purity and recovery. J Hematother 6:5–11

    Article  PubMed  CAS  Google Scholar 

  33. McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ (2004) Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 6:311–317

    Article  PubMed  CAS  Google Scholar 

  34. Lichtman MA (1981) The ultrastructure of the hemopoietic environment of the marrow: a review. Exp Hematol 9:391–410

    PubMed  CAS  Google Scholar 

  35. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  PubMed  CAS  Google Scholar 

  36. Weiss L (1976) The hematopoietic microenvironment of the bone marrow: an ultrastructural study of the stroma in rats. Anat Rec 186:161–184

    Article  PubMed  CAS  Google Scholar 

  37. Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791

    Article  PubMed  CAS  Google Scholar 

  38. Dexter TM (1982) Stromal cell associated haemopoiesis. J Cell Physiol Suppl 1:87–94

    Article  PubMed  CAS  Google Scholar 

  39. Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359

    Article  PubMed  CAS  Google Scholar 

  40. Jones EA, English A, Kinsey SE, Straszynski L, Emery P, Ponchel F et al (2006) Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom 70:391–399

    PubMed  Google Scholar 

  41. Le BK, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

    Article  Google Scholar 

  42. Zannettino AC, Paton S, Kortesidis A, Khor F, Itescu S, Gronthos S (2007) Human mulipotential mesenchymal/stromal stem cells are derived from a discrete subpopulation of STRO-1bright/CD34 /CD45(−)/glycophorin-a-bone marrow cells. Haematologica 92:1707–1708

    Article  PubMed  Google Scholar 

  43. Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62

    PubMed  CAS  Google Scholar 

  44. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  45. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    PubMed  CAS  Google Scholar 

  46. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57

    Article  PubMed  CAS  Google Scholar 

  47. Haylock DN, Nilsson SK (2005) Stem cell regulation by the hematopoietic stem cell niche. Cell Cycle 4:1353–1355

    Article  PubMed  CAS  Google Scholar 

  48. Robinson SN, Ng J, Niu T, Yang H, McMannis JD, Karandish S et al (2006) Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 37:359–366

    Article  PubMed  CAS  Google Scholar 

  49. de Lima M, McNiece I, McMannis J, Hosing C et al (2009) Double cord blood transplantation (CBT) with Ex-vivo expansion (EXP) of One unit utilizing a mesenchymal stromal cell (MSC) platform. Biol Blood Marrow Transplant 15:47–48

    Article  Google Scholar 

  50. De Angeli S, Di Liddo R, Buoro S, Toniolo L, Conconi MT, Belloni AS et al (2004) New immortalized human stromal cell lines enhancing in vitro expansion of cord blood hematopoietic stem cells. Int J Mol Med 13:363–371

    PubMed  Google Scholar 

  51. Purdy MH, Hogan CJ, Hami L, McNiece I, Franklin W, Jones RB et al (1995) Large volume ex vivo expansion of CD34-positive hematopoietic progenitor cells for transplantation. J Hematother 4:515–525

    Article  PubMed  CAS  Google Scholar 

  52. McNiece I, Jones R, Cagnoni P, Bearman S, Nieto Y, Shpall EJ (1999) Ex-vivo expansion of hematopoietic progenitor cells: preliminary results in breast cancer. Hematol Cell Ther 41:82–86

    Article  PubMed  CAS  Google Scholar 

  53. Glimm H, Eaves CJ (1999) Direct evidence for multiple self-renewal divisions of human in vivo repopulating hematopoietic cells in short-term culture. Blood 94:2161–2168

    PubMed  CAS  Google Scholar 

  54. Glimm H, Oh IH, Eaves CJ (2000) Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood 96:4185–4193

    PubMed  CAS  Google Scholar 

  55. McNiece I, Kubegov D, Kerzic P, Shpall EJ, Gross S (2000) Increased expansion and differentiation of cord blood products using a two-step expansion culture. Exp Hematol 28:1181–1186

    Article  PubMed  CAS  Google Scholar 

  56. McNiece I, Jones R, Bearman SI, Cagnoni P, Nieto Y, Franklin W et al (2000) Ex vivo expanded peripheral blood progenitor cells provide rapid neutrophil recovery after high-dose chemotherapy in patients with breast cancer. Blood 96:3001–3007

    PubMed  CAS  Google Scholar 

  57. Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB et al (2002) Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 8:368–376

    Article  PubMed  Google Scholar 

  58. Lazzari L, Lucchi S, Porretti L, Montemurro T, Giordano R, Lopa R et al (2001) Comparison of different serum-free media for ex vivo expansion of HPCs from cord blood using thrombopoietin, Flt-3 ligand, IL-6, and IL-11. Transfusion 41:718–719

    Article  PubMed  CAS  Google Scholar 

  59. Lazzari L, Lucchi S, Rebulla P, Porretti L, Puglisi G, Lecchi L et al (2001) Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system. Br J Haematol 112:397–404

    Article  PubMed  CAS  Google Scholar 

  60. Filip S, Vavrova J, Vokurkova D, Blaha M, Vanasek J (2000) Myeloid differentiation and maturation of SCF  +  IL-3  +  IL-11 expanded AC133+/CD34+ cells selected from high-risk breast cancer patients. Neoplasma 47:73–80

    PubMed  CAS  Google Scholar 

  61. Vavrova J, Filip S, Vokurkova D, Blaha M, Vanasek J, Jebavy L (1999) Ex vivo expansion CD34+/AC133  +  −selected autologous peripheral blood progenitor cells (PBPC) in high-risk breast cancer patients receiving intensive chemotherapy. Hematol Cell Ther 41:105–112

    Article  PubMed  CAS  Google Scholar 

  62. Mohamed AA, Ibrahim AM, El-Masry MW, Mansour IM, Khroshied MA, Gouda HM et al (2006) Ex vivo expansion of stem cells: defining optimum conditions using various cytokines. Lab Hematol 12:86–93

    Article  PubMed  CAS  Google Scholar 

  63. Piacibello W, Sanavio F, Garetto L, Severino A, Dane A, Gammaitoni L et al (1998) Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation. Leukemia 12:718–727

    Article  PubMed  CAS  Google Scholar 

  64. Yao CL, Chu IM, Hsieh TB, Hwang SM (2004) A systematic strategy to optimize ex vivo expansion medium for human hematopoietic stem cells derived from umbilical cord blood mononuclear cells. Exp Hematol 32:720–727

    Article  PubMed  CAS  Google Scholar 

  65. Yao CL, Feng YH, Lin XZ, Chu IM, Hsieh TB, Hwang SM (2006) Characterization of serum-free ex vivo-expanded hematopoietic stem cells derived from human umbilical cord blood CD133(+) cells. Stem Cells Dev 15:70–78

    Article  PubMed  CAS  Google Scholar 

  66. Young JC, Wu S, Hansteen G, Du C, Sambucetti L, Remiszewski S et al (2004) Inhibitors of histone deacetylases promote hematopoietic stem cell self-renewal. Cytotherapy 6:328–336

    Article  PubMed  CAS  Google Scholar 

  67. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  PubMed  CAS  Google Scholar 

  68. Peled T, Landau E, Mandel J, Glukhman E, Goudsmid NR, Nagler A et al (2004) Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp Hematol 32:547–555

    Article  PubMed  CAS  Google Scholar 

  69. Peled T, Landau E, Prus E, Treves AJ, Nagler A, Fibach E (2002) Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells. Br J Haematol 116:655–661

    Article  PubMed  CAS  Google Scholar 

  70. Peled T, Mandel J, Goudsmid RN, Landor C, Hasson N, Harati D et al (2004) Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy 6:344–355

    Article  PubMed  CAS  Google Scholar 

  71. Prus E, Fibach E (2007) The effect of the copper chelator tetraethylenepentamine on reactive oxygen species generation by human hematopoietic progenitor cells. Stem Cells Dev 16:1053–1056

    Article  PubMed  CAS  Google Scholar 

  72. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID (2010) Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 16:232–236

    Article  PubMed  CAS  Google Scholar 

  73. Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID (2005) Dose-dependent effects of the notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 106:2693–2699

    Article  PubMed  CAS  Google Scholar 

  74. Emerson SG, Palsson BO, Clarke MF, Silver SM, Adams PT, Koller MR et al (1995) In vitro expansion of hematopoietic cells for clinical application. Cancer Treat Res 76:215–223

    Article  PubMed  CAS  Google Scholar 

  75. Van ZG, Rummel SA, Koller MR, Larson DB, Drubachevsky I, Palsson M et al (1994) Expansion in bioreactors of human progenitor populations from cord blood and mobilized peripheral blood. Blood Cells 20:482–490

    Google Scholar 

  76. Koller MR, Emerson SG, Palsson BO (1993) Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 82:378–384

    PubMed  CAS  Google Scholar 

  77. Koller MR, Manchel I, Maher RJ, Goltry KL, Armstrong RD, Smith AK (1998) Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant 21:653–663

    Article  PubMed  CAS  Google Scholar 

  78. Koller MR, Manchel I, Newsom BS, Palsson MA, Palsson BO (1995) Bioreactor expansion of human bone marrow: comparison of unprocessed, density-separated, and CD34-enriched cells. J Hematother 4:159–169

    Article  PubMed  CAS  Google Scholar 

  79. Tsai S, Emerson SG, Sieff CA, Nathan DG (1986) Isolation of a human stromal cell strain secreting hemopoietic growth factors. J Cell Physiol 127:137–145

    Article  PubMed  CAS  Google Scholar 

  80. Meagher RC, Salvado AJ, Wright DG (1988) An analysis of the multilineage production of human hematopoietic progenitors in long-term bone marrow culture: evidence that reactive oxygen intermediates derived from mature phagocytic cells have a role in limiting progenitor cell self-renewal. Blood 72:273–281

    PubMed  CAS  Google Scholar 

  81. Astori G, Adami V, Mambrini G, Bigi L, Cilli M, Facchini A et al (2005) Evaluation of ex vivo expansion and engraftment in NOD-SCID mice of umbilical cord blood CD34+ cells using the DIDECO “pluricell system”. Bone Marrow Transplant 35:1101–1106

    Article  PubMed  CAS  Google Scholar 

  82. Liu Y, Liu T, Fan X, Ma X, Cui Z (2006) Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel. J Biotechnol 124:592–601

    Article  PubMed  CAS  Google Scholar 

  83. Guenechea G, Gan OI, Dorrell C, Dick JE (2001) Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2:75–82

    Article  PubMed  CAS  Google Scholar 

  84. Lemischka IR, Jordan CT (2001) The return of clonal marking sheds new light on human hematopoietic stem cells. Nat Immunol 2:11–12

    Article  PubMed  CAS  Google Scholar 

  85. Hogan CJ, Shpall EJ, Keller G (2002) Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci USA 99:413–418

    Article  PubMed  CAS  Google Scholar 

  86. Summers YJ, Heyworth CM, de Wynter EA, Chang J, Testa NG (2001) Cord blood G(0) CD34+ cells have a thousand-fold higher capacity for generating progenitors in vitro than G(1) CD34+ cells. Stem Cells 19:505–513

    Article  PubMed  CAS  Google Scholar 

  87. Summers YJ, Heyworth CM, de Wynter EA, Hart CA, Chang J, Testa NG (2004) AC133+ G0 Cells from cord blood show a high incidence of long-term culture-initiating cells and a capacity for more than 100 million-fold amplification of colony-forming cells in vitro. Stem Cells 22:704–715

    Article  PubMed  Google Scholar 

  88. Williams DA (1993) Ex vivo expansion of hematopoietic stem and progenitor cells–robbing peter to pay Paul? Blood 81:3169–3172

    PubMed  CAS  Google Scholar 

  89. Von Drygalski A, Alespeiti G, Ren L, Adamson JW (2004) Murine bone marrow cells cultured ex vivo in the presence of multiple cytokine combinations lose radioprotective and long-term engraftment potential. Stem Cells Dev 13:101–111

    Article  Google Scholar 

  90. Piacibello W, Sanavio F, Severino A, Dane A, Gammaitoni L, Fagioli F et al (1999) Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 93:3736–3749

    PubMed  CAS  Google Scholar 

  91. Lewis ID, Almeida-Porada G, Du J, Lemischka IR, Moore KA, Zanjani ED et al (2001) Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. Blood 97:3441–3449

    Article  PubMed  CAS  Google Scholar 

  92. Guenechea G, Segovia JC, Albella B, Lamana M, Ramirez M, Regidor C et al (1999) Delayed engraftment of nonobese diabetic/severe combined immunodeficient mice transplanted with ex vivo-expanded human CD34(+) cord blood cells. Blood 93:1097–1105

    PubMed  CAS  Google Scholar 

  93. Zhai QL, Qiu LG, Li Q, Meng HX, Han JL, Herzig RH et al (2004) Short-term ex vivo expansion sustains the homing-related properties of umbilical cord blood hematopoietic stem and progenitor cells. Haematologica 89:265–273

    PubMed  CAS  Google Scholar 

  94. Robinson SN, Simmons PJ, Thomas MW, Brouard N, Javni JA, Trilok S et al (2012) Ex vivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rgamma(null) mice. Exp Hematol 40:445–456

    Article  PubMed  CAS  Google Scholar 

  95. Patah PA, Parmar S, McMannis J, Sadeghi T, Karandish S, Rondon G et al (2007) Microbial contamination of hematopoietic progenitor cell products: clinical outcome. Bone Marrow Transplant 40:365–368

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian K. McNiece Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McNiece, I.K., Robinson, S.N., Shpall, E.J. (2013). MSC for Ex Vivo Expansion of Umbilical Cord Blood Cells. In: Hematti, P., Keating, A. (eds) Mesenchymal Stromal Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5711-4_27

Download citation

Publish with us

Policies and ethics