Skip to main content

Evaluation of Fish Quality and Safety by Proteomics Techniques

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

  • 3088 Accesses

Abstract

Stock depletion, new trends in farming practices, the globalization of markets, and the development of novel products and production methods represent new challenges for seafood quality and safety. Fortunately, genomics, proteomics, and high-throughput microarray technologies have fundamentally changed our ability to study the molecular basis of aspects related to food authenticity, safety, and quality as well as changes induced by processing in food matrices. Furthermore, knowledge about the localization, structure, modification, function, and interactions of the proteins expressed by a genome from any tissue used as a source of food can offer precious information in order to improve its quality, safety, and nutritional properties. Although fish protein databases are still scarce, especially when compared with those available for edible plants and terrestrial animals, proteomics studies of model aquatic organisms are helping us to understand problems related to the quality and safety of seafood. The main objective of this chapter is to present a compilation of studies related to fish quality aspects by means of proteomics tools describing new perspectives and challenges for the use of proteomics-based biomarkers in the identification of the causes of quality flaws and their prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abee T, Van Schaik W, Siezen RJ (2004) Impact of genomics on microbial food safety. Trends Biotechnol 22:653ā€“660

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Addis MF, Cappuccinelli R, Tedde V, Pagnozzi D, Porcu MC, Bonaglini E, Roggio T, Uzzau S (2010) Proteomic analysis of muscle tissue from gilthead sea bream (Sparus aurata L.) farmed in offshore floating cages. Aquaculture 309(1):245ā€“252

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bauchart C, Chambon C, Mirand PP, Savary-Auzeloux I, RĆ©mond D, Morzel M (2007) Peptides in rainbow trout (Oncorhynchus mykiss) muscle subjected to ice storage and cooking. Food Chem 100:1566ā€“1572

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I (2011) Farm animal proteomics ā€“ a review. J Proteomics 74:282ā€“293

    ArticleĀ  CASĀ  Google ScholarĀ 

  • BiĆØche C, de Lamballerie M, Chevret D, Federighi M, Tresse O (2011) Dynamic proteome changes in Campylobacter jejuni 81-176 after high pressure shock and subsequent recovery. Ann NY Acad Sci 1189:133ā€“138

    ArticleĀ  Google ScholarĀ 

  • Bƶhme K, FernĆ”ndez-No IC, Barros-VelĆ”zquez J, Gallardo JM, CaƱas B, Calo-Mata P (2010a) Comparative analysis of protein extraction methods for the identification of seafood-borne pathogenic and spoilage bacteria by MALDI-TOF mass spectrometry. Anal Method 2:1941ā€“1947

    ArticleĀ  Google ScholarĀ 

  • Bƶhme K, FernĆ”ndez-No IC, Barros-VelĆ”zquez J, Gallardo JM, Calo-Mata P, CaƱas B (2010b) Species differentiation of seafood spoilage and pathogenic Gram-negative bacteria by MALDI-TOF mass fingerprinting. J Proteome Res 9:3169ā€“3183

    ArticleĀ  Google ScholarĀ 

  • Bƶhme K, FernĆ”ndez-No IC, Barros-VelĆ”zquez J, Gallardo JM, CaƱas B, Calo-Mata P (2011a) Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 32:2951ā€“2965

    ArticleĀ  Google ScholarĀ 

  • Bƶhme K, FernĆ”ndez-No IC, Gallardo JM, CaƱas B, Calo-Mata P (2011b) Safety assessment of fresh and processed seafood products by MALDI-TOF mass fingerprinting. Food Bioprocess Technol 4:907ā€“918

    ArticleĀ  Google ScholarĀ 

  • Bohne-Kjersem A, Skadsheim A, GoksĆøyr A, GrĆøsvik BE (2009) Candidate biomarker discovery in plasma of juvenile cod (Gadus morhua) exposed to crude North Sea oil, alkyl phenols and polycyclic aromatic hydrocarbons (PAHs). Mar Environ Res 68:268ā€“277

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bohne-Kjersem A, Bache N, Meier S, Nyhammer G, Roepstorff P, SƦle Ƙ, GoksĆøyr A, GrĆøsvik BE (2010) Biomarker candidate discovery in Atlantic cod Gadus morhua continuously exposed to North Sea produced water from egg to fry. Aquat Toxicol 96:280ā€“289

    ArticleĀ  CASĀ  Google ScholarĀ 

  • BorderĆ­as AJ, SĆ”nchez-Alonso I (2011) First processing steps and the quality of wild and farmed fish. J Food Sci 76:1ā€“5

    ArticleĀ  Google ScholarĀ 

  • Cacace G, Mazzeo MF, Sorrentino A, Spada V, Malorni A, Siciliano RA (2010) Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. J Proteomics 73:2021ā€“2030

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cifuentes A, Dugo P, Fanali S (2011) Advances in food analysis. J Chromatogr A 1218:7385

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dory D, Chopin C, Aimone-Gasti I, Gueant JL, Sainte-Laudy J, Moneret-Vautrin DA, Fleurence J (1998) Recognition of an extensive range of IgE-reactive proteins in cod extract. Allergy 53:42ā€“50

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Eriksson J, Fenyƶ D (2005) Protein identification in complex mixtures. J Proteome Res 4:387ā€“393

    ArticleĀ  CASĀ  Google ScholarĀ 

  • FAO (2005) Fisheries and aquaculture topics. Quality of fish and fish products. Topics fact sheets. Text by Lahsen Ababouch. In: FAO fisheries and aquaculture department [online]. Rome. Updated 27 May 2005

    Google ScholarĀ 

  • FernĆ”ndez-No IC, Bƶhme K, Calo-Mata P, Barros-VelĆ”zquez J (2011) Characterisation of histamine-producing bacteria from farmed blackspot seabream Pagellus bogaraveo and turbot Psetta maxima. Int J Food Microbiol 151:182ā€“189

    ArticleĀ  Google ScholarĀ 

  • FernĆ”ndez-No IC, Bƶhme K, Calo-Mata P, CaƱas B, Gallardo JM, Barros-VelĆ”zquez J (2012) Isolation and characterization of Streptococcus parauberis from vacuum-packaging refrigerated seafood products. Food Microbiol 30:91ā€“97

    ArticleĀ  Google ScholarĀ 

  • FornĆ© I, AbiĆ”n J, CerdĆ  J (2010) Fish proteome analysis: model organisms and non-sequenced species. Proteomics 10:858ā€“872

    ArticleĀ  Google ScholarĀ 

  • Gebriel M, Uleberg K, Larssen E, Hjelle BjĆørnstad A, Sivertsvik M, MĆøller SG (2010) Cod (Gadus morhua) muscle proteome cataloging using 1D-PAGE protein separation, nano-liquid chromatography peptide fractionation and linear trap quadrupole LTQ mass spectrometry. J Agric Food Chem 58:12307ā€“12312

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ghaly AE, Dave D, Budge S, Brooks MS (2010) Fish spoilage mechanisms and preservation techniques: review. Am J Appl Sci 7:846ā€“864

    ArticleĀ  Google ScholarĀ 

  • Graham DRM, Elliott ST, Van Eyk JE (2005) Broad-based proteomic strategies: a practical guide to proteomics and functional screening. J Physiol 563:1ā€“9

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gram L, Huss HH (2000) Fresh and processed fish and shellfish. In: Lund BM, Baird-Parker AC, Gould GW (eds) The microbiological safety and quality of foods. Chapman and Hall, London, pp 472ā€“506

    Google ScholarĀ 

  • Grunert KG (2005) Food quality and safety: consumer perception and demand. Eur Rev Agric Econ 32:369ā€“391

    ArticleĀ  Google ScholarĀ 

  • GudmundsdĆ³ttir S, Roche SM, Kristinsson K, KristjĆ”nsson M (2006) Virulence of Listeria monocytogenes isolates from humans and smoked salmon, peeled shrimp and their processing environments. J Food Prot 69:2157ā€“2160

    Google ScholarĀ 

  • Guilbaud M, Chafsey I, Pilet M, Leroi F, PrĆ©vost H, HĆ©braud M, Dousset X (2008) Response of Listeria monocytogenes to liquid smoke. J Appl Microbiol 104:1744ā€“1753

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Havelaar AH, Brul S, de Jong A, de Jonge R, Zwietering MH, Ter Kuile BH (2010) Future challenges to microbial food safety. Int J Food Microbiol 139:S79ā€“S94

    ArticleĀ  Google ScholarĀ 

  • Hazen TH, Martinez RJ, Chen Y, Lafon PC, Garrett NM, Parsons MB, Sobecky PA (2009) Rapid identification of Vibrio parahaemolyticus by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 75:6745ā€“6756

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Herrero M, SimƵ C, GarcĆ­a-CaƱas V, IbƔƱez E, Cifuentes A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 31:49ā€“69

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hocquette J, Richardson RI, Prache S, Medale F, Duffy G, Scollan ND (2005) The future trends for research on quality and safety of animal products. Ital J Anim Sci 4:49ā€“72

    Google ScholarĀ 

  • Hogstrand C, Balesaria S, Glover CN (2002) Application of genomics and proteomics for study of the integrated response to zinc exposure in a non-model fish species, the rainbow trout. Comp Biochem Physiol 133B:523ā€“535

    CASĀ  Google ScholarĀ 

  • Ishida T, Ishii Y, Yamada H, Oguri K (2002) The induction of hepatic selenium-binding protein by aryl hydrocarbon (Ah)-receptor ligands in rats. J Health Sci 48:62ā€“68

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kinoshita Y, Sato T, Naitou H, Ohashi N, Kumazawa S (2007) Proteomic studies on protein oxidation in bonito (Katsuwonus pelamis) muscle. Food Sci Technol Res 13:133ā€“138

    ArticleĀ  CASĀ  Google ScholarĀ 

  • KjƦrsgĆ„rd IVH, Jessen F (2003) Proteome analysis elucidating post-mortem changes in cod (Gadus morhua) muscle proteins. J Agric Food Chem 51:3985ā€“3991

    ArticleĀ  Google ScholarĀ 

  • KjƦrsgĆ„rd IVH, Jessen F (2004) Oxidation of protein in rainbow trout muscle. In: Proceedings of the 34th WEFTA conference. 184. http://www.wefta.org

  • KjƦrsgĆ„rd IVH, NĆørrelykke MR, Jessen F (2006a) Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis. Proteomics 6:1606ā€“1618

    ArticleĀ  Google ScholarĀ 

  • KjƦrsgĆ„rd IVH, NĆørrelykke MR, Baron CP, Jessen F (2006b) Identification of carbonylated protein in frozen rainbow trout (Oncorhynchus mykiss) fillets and development of protein oxidation during frozen storage. J Agric Food Chem 54:9437ā€“9446

    ArticleĀ  Google ScholarĀ 

  • Lu J, Zheng J, Liu H, Li J, Chen H, Chen K (2010) Protein profiling analysis of skeletal muscle of a pufferfish, Takifugu rubripes. Mol Biol Rep 37:2141ā€“2147

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Malik AK, Blasco C, PicĆ³ Y (2010) Liquid chromatography-mass spectrometry in food safety. J Chromatogr A 1217:4018ā€“4040

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Martin SAM, Vilhelmsson O, MĆ©dale F, Watt P, Kaushik S, Houlihan DB (2003) Proteomic sensitivity to dietary manipulations in rainbow trout. BBA 1651:17ā€“29

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Martinez I (1992) Fish myosin degradation upon storage. In: Huss HH, Jakobsen M, Liston J (eds) Quality assurance in the fish industry. Elsevier Science, Amsterdam, pp 389ā€“397

    Google ScholarĀ 

  • Martinez I, Ofstad R, Olsen RL (1990) Myosin isoforms in red and white muscles of some teleost fishes. J Muscle Res Cell Motil 11:489ā€“495

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Martinez I, Christiansen JS, Ofstad R, Olsen RL (1991) Comparison of myosin isoenzymes present in skeletal and cardiac muscles of the Arctic charr Salvelinus alpinus (L.). Sequential expression of different myosin heavy chains during development of the fast white skeletal muscle. Eur J Biochem 195:743ā€“753

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Martinez I, Solberg C, Lauritzen K, Ofstad R (1992) Two-dimensional electrophoretic analyses of cod (Gadus morhua, L.) whole muscle proteins, water-soluble fraction and surimi. Effect of the addition of CaCl2 and MgCl2 during the washing procedure. Appl Theor Electrophor 2:201ā€“206

    CASĀ  Google ScholarĀ 

  • Martinez I, Slizyte R, Dauksas E (2007) High resolution two-dimensional electrophoresis as a tool to differentiate wild from farmed cod (Gadus morhua) and to assess the protein composition of klipfish. Food Chem 101:1337ā€“1343

    Google ScholarĀ 

  • Meier S, Morton HC, Nyhammer G, GrĆøsvik BE, Makhotin V, Geffen A, Boitsov S, Kvestad KA, Bohne-Kjersem A, GoksĆøyr A, Folkvord A, KlungsĆøyr J, Svardal A (2010) Development of Atlantic cod (Gadus morhua) exposed to produced water during early life stages: effects on embryos, larvae and juvenile fish. Mar Environ Res 70:383ā€“394

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Miracle AL, Ankley GT (2005) Ecotoxicogenomics: linkages between exposure and effects in assessing risks of aquatic contaminants to fish. Reprod Toxicol 19:321ā€“326

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Monti G, De Napoli L, Mainolfi P, Barone R, Guida M, Marino G, Amoresano A (2005) Monitoring food quality by microfluidic electrophoresis, gas chromatography and mass spectrometry techniques: effects of aquaculture on the sea bass (Dicentrarchus labrax). Anal Chem 77:2587ā€“2594

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Morzel M, Verrez-Bagnis V, Arendt EK, Fleurence J (2000) Use of two-dimensional electrophoresis to evaluate proteolysis in salmon (Salmo salar) muscle as affected by a lactic fermentation. J Agric Food Chem 48:239ā€“244

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Morzel M, Chambon C, LefĆØvre F, Paboeuf G, Laville E (2006) Modifications of trout (Oncorhynchus mykiss) muscle proteins by preslaughter activity. J Agric Food Chem 54:2997ā€“3001

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nini H, Sissener NH, Martin SAM, Cash P, HevrĆøy EM, Sanden M, Hemre GI (2010) Proteomic profiling of liver from Atlantic salmon (Salmo salar) fed genetically modified soy compared to the near-isogenic non-GM line. Mar Biotechnol 12:273ā€“281

    ArticleĀ  Google ScholarĀ 

  • Norton DM, Scarlett JM, Horton K, Sue D, Thimothe J, Boor KJ, Wiedmann M (2001) Characterization and pathogenic potential of Listeria monocytogenes isolates from the smoked fish industry. Appl Environ Microbiol 67:646ā€“653

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Oā€™Flaherty S, Klaenhammer TR (2011) The impact of omic technologies on the study of food microbes. Ann Rev Food Sci Technol 2:353ā€“371

    ArticleĀ  Google ScholarĀ 

  • Ochiai Y (2010) Changes in quality and denaturation of sarcoplasmic protein components in the burnt meat of bluefin tuna (Thunnus thynnus orientalis). Nippon Suisan Gakkaishi Jpn Ed 76:695ā€“704

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ochiai Y, Kobayashi T, Watabe S, Hashimoto K (1990) Mapping of fish myosin light chains by two-dimensional gel electrophoresis. Comp Biochem Physiol 95B:341ā€“345

    CASĀ  Google ScholarĀ 

  • Pazos M, Da Rocha AP, Roepstorff P, Rogowska-Wrzesinska A (2011) Fish proteins as targets of ferrous-catalyzed oxidation: identification of protein carbonyls by fluorescent labelling on two-dimensional gels and MALDI-TOF/TOF mass spectrometry. J Agric Food Chem 59:7962ā€“7977

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pedreschi R, Maarten H, Lilley KS, Bart N (2010) Proteomics for the food industry: opportunities and challenges. CRC Crit Rev Food Sci Nutr 50:680ā€“692

    ArticleĀ  CASĀ  Google ScholarĀ 

  • PiƱeiro C, VelĆ”zquez JB, Sotelo CG, PĆ©rez-MartĆ­n RI, Gallardo JM (1998) Two-dimensional electrophoretic study of the water-soluble protein fraction in white muscle of Gadoid fish species. J Agric Food Chem 46:3991ā€“3997

    ArticleĀ  Google ScholarĀ 

  • PiƱeiro C, VĆ”zquez J, Marina AI, Barros-VelĆ”zquez J, Gallardo JM (2001) Characterization and partial sequencing of species-specific sarcoplasmic polypeptides from commercial hake species by mass spectrometry following 2-DE analysis. Electrophoresis 22:1545ā€“1552

    ArticleĀ  Google ScholarĀ 

  • PiƱeiro C, Barros-VelĆ”zquez J, VĆ”zquez J, Figueras A, Gallardo JM (2003) Proteomics as a tool for the investigation of seafood and other marine products. J Proteome Res 2:127ā€“135

    ArticleĀ  Google ScholarĀ 

  • PiƱeiro C, CaƱas B, Carrera M (2010) The role of proteomics in the study of the influence of climate change on seafood products. Food Res Int 43:1791ā€“1802

    ArticleĀ  Google ScholarĀ 

  • Pinstrup-Andersen P (2009) Food security. Definition and measurement. Food Secur 1:5ā€“7

    ArticleĀ  Google ScholarĀ 

  • Pischetsrieder M, Baeuerlein R (2009) Proteome research in food science. Chem Soc Rev 38:2600ā€“2608

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Prunet P, Ƙverli Ƙ, Douxfils J, Bernardini G, Kestemont P, Baron C (2012) Fish welfare and genomics. Fish Physiol Biochem 38:43ā€“60

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Roth B, GrimsbĆø E, Slinde E, Foss A, Stien LH, Nortvedt R (2012) Crowding, pumping and stunning of Atlantic salmon, the subsequent effect on pH and rigor mortis. Aquaculture 326ā€“329:178ā€“180

    ArticleĀ  Google ScholarĀ 

  • Sanchez-Dardon J, Voccia I, Hontela A, Chilmonczyk S, Dunier M, Boermans H, Blakley B, Fournier M (1999) Immunomodulation by heavy metals tested individually or in mixtures in rainbow trout (Oncorhynchus mykiss) exposed in vivo. Environ Toxicol Chem 18:1492ā€“1497

    CASĀ  Google ScholarĀ 

  • Santesmases M (2004) Marketing. Conceptos y Estrategias. Edit. PirĆ”mide, S.A. Madrid. 1120 pp

    Google ScholarĀ 

  • Schiavone R, Zilli L, Storelli C, Vilella S (2008) Identification by proteome analysis of muscle proteins in sea bream (Sparus aurata). Eur Food Res Technol 227:1403ā€“1410

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Self RL, Wu W, Marks HS (2011) Simultaneous quantification of eight biogenic amine compounds in tuna by matrix solid-phase dispersion followed by HPLC-orbitrap mass spectrometry. J Agric Food Chem 59:5906ā€“5913

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Terlouw EMC, Arnould C, Auperin B, Berri C, Le Bihan-Duval E, Deiss V et al (2008) Pre-slaughter conditions, animal stress and welfare: current status and possible future research. Animal 2:1501ā€“1517

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Terova G, Addis MF, Preziosa E, Pisanu S, Pagnozzi D, Biosa G, Gomati R, Bernadini G, Roggio T, Saroglia M (2011) Effects of post mortem storage temperature on sea bass (Dicentrarchus labrax) muscle protein degradation: analysis by 2-D DIGE and MS. Proteomics 11:2901ā€“2910

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Van Vliet E (2011) Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX 28:17ā€“44

    Google ScholarĀ 

  • Veiseth-Kent E, Grove H, FƦrgestad EM, FjƦra SO (2010) Changes in muscle and blood plasma proteomes of Atlantic salmon (Salmo salar) induced by crowding. Aquaculture 309:272ā€“279

    ArticleĀ  CASĀ  Google ScholarĀ 

  • VerdĆŗ AJ (2003) Una escala multi-Ć­tem para la mediciĆ³n de la calidad percibida en alimentos y bebidas. Rev Eur DirecciĆ³n y Econ Empresa 12:59ā€“76

    Google ScholarĀ 

  • Verrez-Bagnis V, Ladrat C, Morzel M, NoĆ«l J, Fleurence J (2001) Protein changes in post mortem sea bass (Dicentrarchus labrax) muscle monitored by one- and two-dimensional gel electrophoresis. Electrophoresis 22:1539ā€“1544

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Videler J (2011) An opinion paper: emphasis on white muscle development and growth to improve farmed fish flesh quality. Fish Physiol Biochem 37:337ā€“343

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang PA, Vang B, Pedersen AM, Martinez I, Olsen RL (2011) Post-mortem degradation of myosin heavy chain in intact fish muscle: effects of pH and enzyme inhibitors. Food Chem 124:1090ā€“1095

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Watabe S, Hwang GC, Nakaya M, Guo XF, Okamoto Y (1992) Fast skeletal myosin isoforms in thermally acclimated carp. J Biochem 111:113ā€“122

    CASĀ  Google ScholarĀ 

  • Welker M (2011) Proteomics for routine identification of microorganisms. Proteomics 11:3143ā€“3153

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yaktine AL, Nesheim MC, James CA (2008) Nutrient and contaminant tradeoffs: exchanging meat, poultry, or seafood for dietary protein. Nutr Rev 66:113ā€“122

    ArticleĀ  Google ScholarĀ 

  • Yamashita M (2010) Stress responses of fish during catching process. In: Konno K, Ochia Y, Fukuda Y (eds) Quality control of tuna meat by optimization of fishing and handling. Koseisha-Koseikaku, Tokyo, pp 81ā€“94

    Google ScholarĀ 

  • Yamashita Y, Yamashita M (2010) Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J Biol Chem 285:18134ā€“18138

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yamashita Y, Yabu T, Yamashita M (2010) Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. World J Biol Chem 1:144ā€“150

    ArticleĀ  Google ScholarĀ 

  • Zhang XW, Yap Y, Wei D, Chen G, Chen F (2008) Novel omics technologies in nutrition research. Biotechnol Adv 26:169ā€“176

    ArticleĀ  Google ScholarĀ 

  • Zhu JY, Huang HQ, Bao XD, Lin QM, Cai ZW (2006) Acute toxicity profile of cadmium revealed by proteomics in brain tissue of Paralichthys olivaceus: potential role of transferrin in cadmium toxicity. Aquat Toxicol 78:127ā€“135

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iciar Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

PiƱeiro, C., Martinez, I. (2013). Evaluation of Fish Quality and Safety by Proteomics Techniques. In: ToldrƔ, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_10

Download citation

Publish with us

Policies and ethics