Skip to main content

Clinical Features, Diagnostic Criteria and Pathogenesis of Diabetes Mellitus

  • Chapter
  • First Online:
Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 771))

Abstract

Diabetes mellitus is a metabolic disorder of glucose homeostasis and associated with long term vascular complications leading to morbidity and mortality. It is the fastest growing non-communicable disease throughout the world. The pathophysiology of diabetes is complex and multifactorial. Understanding pathological mechanisms of disease can help clinicians to identify and treat the factors involved effectively, and design preventive strategies so as to halt the pandemic of this deadly disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047–53.

    PubMed  Google Scholar 

  2. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med 2010; 362: 1090–101.

    Article  CAS  PubMed  Google Scholar 

  3. Fox CS, Pencina MJ, Meigs JB, et al. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham Heart Study. Circulation 2006; 113: 2914–8.

    Article  PubMed  Google Scholar 

  4. International Diabetes Foundation. IDF Diabetes Atlas, 4th ed. Brussels: International Diabetes Foundation, 2009.

    Google Scholar 

  5. Engelgau MM, Geiss LS, Saaddine JB, et al. The evolving diabetes burden in the United States. Ann Intern Med 2004; 140: 945.

    Article  PubMed  Google Scholar 

  6. Dabelea D, Pettitt D.I. Hanson RL, et al. Birth weight, type 2 diabetes and insulin resistance in Pima Indian children and young adults. Diabetes Care 1999; 22: 944–50.

    CAS  Google Scholar 

  7. http://www.cdc.gov/diabetes/pubs/pdfndfs-2007.

  8. Daneman D. Type 1 diabetes. Lancet 2006; 367: 847–58.

    Article  CAS  PubMed  Google Scholar 

  9. Classification and diagnosis of Diabetes: Clinical practice recommendation. Diabetes Care 2011; 26 (Suppl l): S11–3.

    Google Scholar 

  10. Eisenbarth GS. Classification, diagnostic tests and Pathogenesis. In: Becker KL, ed. Principles and Practice of Endocrinology and Metabolism. Philadelphia: Lippincot Williams and Wilkins, 2001: 1315–1319.

    Google Scholar 

  11. Umesh M. Diabetes mellitus and hypoglycemia. In: McPhee SI, Papadakis M, eds. Current Medical Diagnosis and Treatment. USA: McGraw-Hill, 2010: 1079–1121.

    Google Scholar 

  12. Nathan DM, Singer DE, Hurxthal K. The clinical information value of the glycosylated hemoglobin assay. N Engl J Med 1984; 310: 341–6.

    Article  CAS  PubMed  Google Scholar 

  13. Nathan DM, Kuenen J, Borg R, et al. Translating the A1C Assay into estimated average glucose values. Diabetes Care 2008; 31:1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panzer S, Kronik G, Lechner K, et al. Glycosylated hemoglobins (GHb): an index of red cell survival. Blood 1982; 59: 1348–50.

    CAS  PubMed  Google Scholar 

  15. Polgreen PM. Putz D, Stapleton JT. Inaccurate glycosylated hemoglobin A1C measurements in human immunodeficiency virus-positive patients with diabetes mellitus. Clin Infect Dis 2003; 37: e53.

    Article  CAS  PubMed  Google Scholar 

  16. Brown JN, Kemp DW, Brice KR. Class effect of erythropoietin therapy on hemoglobin A1C in a patient with diabetes mellitus and chronic kidney disease not undergoing hemodialysis. Pharmacotherapy 2009; 29: 468–72.

    Article  CAS  PubMed  Google Scholar 

  17. Narbonne H, Renacco E, Pradel V, et al. Can fructosamine be a surrogate for HbA(1c) in evaluating the achievement of therapeutic goals in diabetes? Diabetes Metab 2001; 27: 598–603.

    CAS  PubMed  Google Scholar 

  18. Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 1994; 331: 1428.

    Article  CAS  PubMed  Google Scholar 

  19. Vehik K, Hamman RF, Lezotte D, et al. Increasing incidence of type 1 diabetes in 0-to 17-year-old Colorado youth. Diabetes Care 2007; 30: 503–9.

    Article  PubMed  Google Scholar 

  20. Gale EA. The rise of childhood type 1 diabetes in the 20th century. Diabetes 2002; 51:3353–61.

    Article  CAS  PubMed  Google Scholar 

  21. Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007; 39: 857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wenzlau JM, Juhl K, Yu L, et al. The cation efflux transporter ZuT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 2007; 104: 17040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Niskanen LK, Tuomi T, Karjalainen J, et al. GAD antibodies in NIDDM. Ten-year follow-up from the diagnosis. Diabetes Care 1995; 18: 1557–65.

    CAS  PubMed  Google Scholar 

  24. Purnell JQ, Dev RK, Steffes MW, et al. Relationship of family history of type 2 diabetes, hypoglycemia and auto antibodies to weight gain and lipids with intensive and conventional therapy in the Diabetes Control and Complications Trial. Diabetes 2003; 52: 2623–9.

    Article  CAS  PubMed  Google Scholar 

  25. Redondo MJ, Rewers M. Yu L, et al. Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ 1999; 318: 698–702.

    CAS  PubMed  Google Scholar 

  26. Beck-Nielsen H, Groop LC. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. J Clin Invest 1994; 94: 1714.

    CAS  PubMed  Google Scholar 

  27. Engelgau MM, Geiss LS, Saaddine JB, et al. The evolving diabetes burden in the United States. Ann Intern Med 2004; 140: 945–50.

    Article  PubMed  Google Scholar 

  28. Houmard JA, Weidner MD, Dolan PL. Skeletal muscle GLUT4 protein concentration and aging in humans. Diabetes 1995; 44: 555–60.

    Article  CAS  PubMed  Google Scholar 

  29. Rothman DL, Magnussen I, Cline G, et al. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1995; 92: 983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173.

    Google Scholar 

  31. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab 2007; 92: 399–404.

    Article  CAS  PubMed  Google Scholar 

  32. Milner KL, Van Der Poorten D, et al. Chronic hepatitis C is associated with peripheral rather than hepatic insulin resistance. Gastroenterology 2010; 138: 932–41.

    Article  PubMed  Google Scholar 

  33. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 2004; 88: 787–835.

    Article  Google Scholar 

  34. Chen M, Bergman RN, Pacini G, et al. Pathogenesis of age-related glucose intolerance in man: insulin resistance and decreased beta-cell function. J Clin Endocrinol Metab 1985; 60: 13–20.

    Article  CAS  PubMed  Google Scholar 

  35. Holman RR. Assessing the potential for alpha-glucosidase inhibitors in prediabetic states. Diabetes Res Clin Pract 1998; 40(Suppl): S21–5.

    Article  CAS  PubMed  Google Scholar 

  36. Leahy JL, Irl BH, Kevin AP, et al. Targeting β-cell function early in the course of therapy for type2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 4206–16.

    Article  CAS  PubMed  Google Scholar 

  37. Yki-Järvinen H. Glucose toxicity. Endocr Rev 1992; 13: 415–31.

    PubMed  Google Scholar 

  38. Robertson RP, Olson LK, Zhang HJ. Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes 1994; 43: 1085–9.

    Article  CAS  PubMed  Google Scholar 

  39. Olefsky J, Farquhar JW, Reaven G. Relationship between fasting plasma insulin level and resistance to insulin-mediated glucose uptake in normal and diabetic subjects. Diabetes 1973; 22: 507–13.

    Article  CAS  PubMed  Google Scholar 

  40. Kahn SE, Prigeon RL, McCulloch DK, et al. Quantification of the relationship between insulin sensitivity and B-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 1993; 42: 1663–72.

    CAS  PubMed  Google Scholar 

  41. DeFronzo RA, Bonadonna RC, Ferrannini F. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15: 318–68.

    Article  Google Scholar 

  42. Klöppel G, Lohr M, Habich K, et al. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res 1985; 4: 110–25.

    PubMed  Google Scholar 

  43. Zhou YP, Grill V. Long term exposure to fatty acids and ketones inhibits beta cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab 1995; 80: 1584–90.

    CAS  PubMed  Google Scholar 

  44. Chia CW. Chia, Josephine M. Egan incretin-based therapies in type 2 diabetes mellitus. J Clin Endocrinol Metab 2008; 93: 3703-16.

    CAS  PubMed  Google Scholar 

  45. Nauck MA. Homberger E, Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986; 63: 492–8.

    CAS  PubMed  Google Scholar 

  46. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001; 86: 3717–23.

    Article  CAS  PubMed  Google Scholar 

  47. Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 2003; 144: 5149–58.

    Article  CAS  PubMed  Google Scholar 

  48. Brubaker PL, Drucker DJ. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut and central nervous system. Endocrinology 2004; 145: 2653–9.

    Article  CAS  PubMed  Google Scholar 

  49. Egan JM, Bulotta A, Hui H, et al. GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet cells. Diabetes Metab Res Rev 2003; 19: 115–23.

    Article  CAS  PubMed  Google Scholar 

  50. Verdich C, Flint A, Gutzwiller JP, et al. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001; 86: 4382–9._

    CAS  PubMed  Google Scholar 

  51. Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest 1995; 96: 1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Niswender KD,Magnuson MA. Obesity and the beta cell: lessons from leptin. J Clin Invest 2007; 117: 2753–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116: 1784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Graham TE, Yang Q, Bluher M, et al. Retinol-binding protein 4 and insulin resistance in lean, obese and diabetic subjects. N Engl J Med 2006; 354: 2552–63.

    Article  CAS  PubMed  Google Scholar 

  55. Gat-Yablonski G, Shalitin S, Phillip M. Maturity onset diabetes of the young. Pediatr Endocrinol Rev 2006; 3(Suppl 3): 514–20.

    PubMed  Google Scholar 

  56. Holmkvist J. Almgren P, Lyssenko V, et al. Common variants in maturity-onset diabetes of the young genes and future risk of type 2 diabetes. Diabetes 2008; 57: 1738–44.

    CAS  PubMed  Google Scholar 

  57. Neel JV. “Diabetes mellitus”: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 1962; 14: 353–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Forsén T, Eriksson J, Tuomilehto J. et al. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000; 133: 176–82.

    PubMed  Google Scholar 

  59. Ritenbaugh C, Goodby CS. Beyond the thrifty gene: metabolic implications of prehistoric migration into the New World. Med Anthropol 1989; 11: 227–226.

    Article  CAS  PubMed  Google Scholar 

  60. Zander M, Madsbad S, Madsen JL. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta cell function in type 2 diabetes: a parallel-group study. Lancet 2002; 359: 824–30.

    Article  CAS  PubMed  Google Scholar 

  61. Westermark P, Johnson KH, O’Brien TD. Islet amyloid polypeptide—a novel controversy in diabetes research. Diabetologia 1992; 35: 297.

    Article  CAS  PubMed  Google Scholar 

  62. Mathieu C, Gysemans C, Giulietti A, et al. Vitamin D and diabetes. Diabetologia 2005; 48: 1247–57._

    Article  CAS  PubMed  Google Scholar 

  63. Bin-Abbas BS, Jabari MA, Issa SD, et al. Vitamin D levels in Saudi Children with type 1 diabetes. Saudi Med J 2011; 32: 589–92.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Imam, K. (2013). Clinical Features, Diagnostic Criteria and Pathogenesis of Diabetes Mellitus. In: Ahmad, S.I. (eds) Diabetes. Advances in Experimental Medicine and Biology, vol 771. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5441-0_25

Download citation

Publish with us

Policies and ethics