Skip to main content

Towards the Systematic Discovery of Immunomodulatory Adjuvants

  • Chapter
  • First Online:
Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines

Part of the book series: Immunomics Reviews: ((IMMUN,volume 5))

Abstract

Adjuvants potentiate immune responses, reducing the amount and dosage of antigen needed for protective immunity. Adjuvants are particularly important when considering subunit, epitope-based, or other more exotic vaccine formulations that lack significant inherent immunogenicity. While innumerable adjuvants are known, only a handful are licensed for human use: principally alum, and squalene-based oil-in-water adjuvants. Alum, the most commonly used, is suboptimal. There are many varieties of adjuvant: proteins, oligonucleotides, drug-like small-molecules, and liposome-based delivery systems with adjuvant activity being perhaps the most prominent. Like poisons, adjuvants function via several mechanisms. Many plausible alternatives have been proposed. Focussing in particular on the discovery of small-molecule adjuvants, in the following we give a brief and fairly synoptic overview of adjuvants and their discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glenny AT, Pope CG, Waddington H, Wallace U (1926) The antigenic value of toxoid precipitated by potassium alum. J Pathol Bacteriol 29:38–45

    Google Scholar 

  2. Volk VK, Bunney WE (1942) Reimmunization against diphtheria of previously immunized children. Am J Public Health Nations Health 32(7):700–708

    Article  PubMed  CAS  Google Scholar 

  3. Volk VK, Bunney WE (1942) Diphtheria immunization with fluid toxoid and alum-precipitated toxoid. Am J Public Health Nations Health 32(7):690–699

    Article  PubMed  CAS  Google Scholar 

  4. Aguilar JC, Rodriguez EG (2007) Vaccine adjuvants revisited. Vaccine 25(19):3752–3762

    Article  PubMed  CAS  Google Scholar 

  5. McCluskie MJ, Weeratna RD (2001) Novel adjuvant systems. Curr Drug Targets Infect Disord 1(3):263–271

    Article  PubMed  CAS  Google Scholar 

  6. Spickler AR, Roth JA (2003) Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med 17(3):273–281

    Article  PubMed  Google Scholar 

  7. Gupta RK et al (1993) Adjuvants—a balance between toxicity and adjuvanticity. Vaccine 11(3):293–306

    Article  PubMed  CAS  Google Scholar 

  8. Gupta RK, Siber GR (1995) Adjuvants for human vaccines—current status, problems and future prospects. Vaccine 13(14):1263–1276

    Article  PubMed  CAS  Google Scholar 

  9. Jensen OM, Koch C (1988) On the effect of Al(Oh)3 as an immunological adjuvant. APMIS 96(3):257–264

    Article  CAS  Google Scholar 

  10. Gupta RK, Siber GR (1994) Comparison of adjuvant activities of aluminium phosphate, calcium phosphate and stearyl tyrosine for tetanus toxoid. Biologicals 22(1):53–63

    Article  PubMed  CAS  Google Scholar 

  11. Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32(3):155–172

    Article  PubMed  CAS  Google Scholar 

  12. Marshall DJ et al (2006) Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine 24(3):244–253

    Article  PubMed  CAS  Google Scholar 

  13. Relyveld EH, Bizzini B, Gupta RK (1998) Rational approaches to reduce adverse reactions in man to vaccines containing tetanus and diphtheria toxoids. Vaccine 16(9–10):1016–1023

    Article  PubMed  CAS  Google Scholar 

  14. Anon (1963) Jules Freund, 1890–1960. J Immunol 90:331–336

    Google Scholar 

  15. Anon (1960) Jules Freund. Lancet 1(7132):1031–1032

    Google Scholar 

  16. Claassen E et al (1992) Freund’s complete adjuvant: an effective but disagreeable formula. Res Immunol 143(5):478–483; discussion 572

    Google Scholar 

  17. Evans JT et al (2003) Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev Vaccines 2(2):219–229

    Article  PubMed  CAS  Google Scholar 

  18. Tejada-Simon MV, Pestka JJ (1998) Production of polyclonal antibody against ergosterol hemisuccinate using Freund’s and Titermax adjuvants. J Food Prot 61(8):1060–1063

    PubMed  CAS  Google Scholar 

  19. Allison AC, Byars NE (1992) Syntex adjuvant formulation. Res Immunol 143(5):519–525

    Article  PubMed  CAS  Google Scholar 

  20. Brey RN (1995) Development of vaccines based on formulations containing nonionic block copolymers. Pharm Biotechnol 6:297–311

    Article  PubMed  CAS  Google Scholar 

  21. O’Hagan DT, Wack A, Podda A (2007) MF59 is a safe and potent vaccine adjuvant for flu vaccines in humans: what did we learn during its development? Clin Pharmacol Ther 82(6):740–744

    Article  PubMed  CAS  Google Scholar 

  22. O’Hagan DT (2007) MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines 6(5):699–710

    Article  PubMed  Google Scholar 

  23. Walker WT, Faust SN (2010) Monovalent inactivated split-virion AS03-adjuvanted pandemic influenza A (H1N1) vaccine. Expert Rev Vaccines 9(12):1385–1398

    Article  PubMed  CAS  Google Scholar 

  24. Waddington C et al (2010) Open-label, randomised, parallel-group, multicentre study to evaluate the safety, tolerability and immunogenicity of an AS03(B)/oil-in-water emulsion-adjuvanted (AS03(B)) split-virion versus non-adjuvanted whole-virion H1N1 influenza vaccine in UK children 6 months to 12 years of age. Health Technol Assess 14(46):1–130

    PubMed  Google Scholar 

  25. Wack A et al (2008) Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine 26(4):552–561

    Article  PubMed  CAS  Google Scholar 

  26. Pellegrini M et al (2009) MF59-adjuvanted versus non-adjuvanted influenza vaccines: integrated analysis from a large safety database. Vaccine 27(49):6959–6965

    Article  PubMed  CAS  Google Scholar 

  27. Schwarz TF (2009) Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine, Cervarix. Adv Ther 26(11):983–998

    Article  PubMed  Google Scholar 

  28. Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27(25–26):3331–3334

    Article  PubMed  CAS  Google Scholar 

  29. Lambrecht BN et al (2009) Mechanism of action of clinically approved adjuvants. Curr Opin Immunol 21(1):23–29

    Article  PubMed  CAS  Google Scholar 

  30. Noe SM et al (2010) Mechanism of immunopotentiation by aluminum-containing adjuvants elucidated by the relationship between antigen retention at the inoculation site and the immune response. Vaccine 28(20):3588–3594

    Article  PubMed  CAS  Google Scholar 

  31. Zaborsky N et al (2010) Antigen aggregation decides the fate of the allergic immune response. J Immunol 184(2):725–735

    Article  PubMed  CAS  Google Scholar 

  32. Li H, Nookala S, Re F (2007) Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J Immunol 178(8):5271–5276

    PubMed  CAS  Google Scholar 

  33. Li H et al (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181(1):17–21

    PubMed  CAS  Google Scholar 

  34. Aimanianda V et al (2009) Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci 30(6):287–295

    Article  PubMed  CAS  Google Scholar 

  35. Eisenbarth SC et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122–1126

    Article  PubMed  CAS  Google Scholar 

  36. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81(1):1–5

    Article  PubMed  CAS  Google Scholar 

  37. Schenten D, Medzhitov R (2011) The control of adaptive immune responses by the innate immune system. Adv Immunol 109:87–124

    Article  PubMed  CAS  Google Scholar 

  38. Matzinger P (2002) An innate sense of danger. Ann N Y Acad Sci 961:341–342

    Article  PubMed  Google Scholar 

  39. Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305

    Article  PubMed  CAS  Google Scholar 

  40. Gasse P et al (2009) Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med 179(10):903–913

    Article  PubMed  CAS  Google Scholar 

  41. Denoble AE et al (2011) Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci U S A 108(5):2088–2093

    Article  PubMed  CAS  Google Scholar 

  42. Miyaji EN et al (2011) Trends in adjuvant development for vaccines: DAMPs and PAMPs as potential new adjuvants. Braz J Med Biol Res 44(6):500–513

    PubMed  CAS  Google Scholar 

  43. Olive C (2012) Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 11(2):237–256

    Article  PubMed  CAS  Google Scholar 

  44. Bayry J et al (2008) From ‘perfect mix’ to ‘potion magique’—regulatory T cells and anti-inflammatory cytokines as adjuvant targets. Nat Rev Microbiol 6(1):C1; author reply C2

    Google Scholar 

  45. Kornbluth RS, Stone GW (2006) Immunostimulatory combinations: designing the next generation of vaccine adjuvants. J Leukoc Biol 80(5):1084–1102

    Article  PubMed  CAS  Google Scholar 

  46. Carlring J, Barr T, Heath AW (2005) Adjuvanticity of anti-CD40 in vaccine development. Curr Opin Mol Ther 7(1):73–77

    CAS  Google Scholar 

  47. Kanagavelu SK et al (2012) Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine. Vaccine 30(4):691–702

    Article  PubMed  CAS  Google Scholar 

  48. Higgins SC, Mills KH (2010) TLR, NLR agonists, and other immune modulators as infectious disease vaccine adjuvants. Curr Infect Dis Rep 12(1):4–12

    Article  PubMed  Google Scholar 

  49. Gherardi MM, Ramirez JC, Esteban M (2001) Towards a new generation of vaccines: the cytokine IL-12 as an adjuvant to enhance cellular immune responses to pathogens during prime-booster vaccination regimens. Histol Histopathol 16(2):655–667

    PubMed  CAS  Google Scholar 

  50. Yoon HA et al (2006) Cytokine GM-CSF genetic adjuvant facilitates prophylactic DNA vaccine against pseudorabies virus through enhanced immune responses. Microbiol Immunol 50(2):83–92

    PubMed  CAS  Google Scholar 

  51. Portielje JE et al (2003) IL-12: a promising adjuvant for cancer vaccination. Cancer Immunol Immunother 52(3):133–144

    PubMed  CAS  Google Scholar 

  52. Metzger DW (2009) IL-12 as an adjuvant for the enhancement of protective humoral immunity. Expert Rev Vaccines 8(5):515–518

    Article  PubMed  CAS  Google Scholar 

  53. Wright AK et al (2011) rhIL-12 as adjuvant augments lung cell cytokine responses to pneumococcal whole cell antigen. Immunobiology 216(10):1143–1147

    Article  PubMed  CAS  Google Scholar 

  54. Palma C et al (2008) The LTK63 adjuvant improves protection conferred by Ag85B DNA-protein prime-boosting vaccination against Mycobacterium tuberculosis infection by dampening IFN-gamma response. Vaccine 26(33):4237–4243

    Article  PubMed  CAS  Google Scholar 

  55. McSorley SJ et al (2002) Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 169(7):3914–3919

    PubMed  CAS  Google Scholar 

  56. Gupta S et al (2011) EBV LMP1, a viral mimic of CD40, activates dendritic cells and functions as a molecular adjuvant when incorporated into an HIV vaccine. J Leukoc Biol 90(2):389–398

    Article  PubMed  CAS  Google Scholar 

  57. Rey-Ladino J et al (2011) Natural products and the search for novel vaccine adjuvants. Vaccine 29(38):6464–6471

    Article  PubMed  CAS  Google Scholar 

  58. Ragupathi G et al (2011) Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 10(4):463–470

    Article  PubMed  CAS  Google Scholar 

  59. Kensil CR, Kammer R (1998) QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs 7(9):1475–1482

    Article  PubMed  CAS  Google Scholar 

  60. Liu G et al (2002) QS-21 structure/function studies: effect of acylation on adjuvant activity. Vaccine 20(21–22):2808–2815

    Article  PubMed  CAS  Google Scholar 

  61. Evans TG et al (2001) QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans. Vaccine 19(15–16):2080–2091

    Article  PubMed  CAS  Google Scholar 

  62. Ogawa C, Liu YJ, Kobayashi KS (2011) Muramyl dipeptide and its derivatives: peptide adjuvant in immunological disorders and cancer therapy. Curr Bioact Compd 7(3):180–197

    Article  PubMed  CAS  Google Scholar 

  63. Aucouturier J et al (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1(1):111–118

    Article  PubMed  CAS  Google Scholar 

  64. Enoksson M et al (2011) Human cord blood-derived mast cells are activated by the Nod1 agonist M-TriDAP to release pro-inflammatory cytokines and chemokines. J Innate Immun 3(2):142–149

    Article  PubMed  CAS  Google Scholar 

  65. Mata-Haro V et al (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316(5831):1628–1632

    Article  PubMed  CAS  Google Scholar 

  66. Cluff CW (2010) Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol 667:111–123

    Article  PubMed  Google Scholar 

  67. Schromm AB et al (2007) Physicochemical and biological analysis of synthetic bacterial lipopeptides: validity of the concept of endotoxic conformation. J Biol Chem 282(15):11030–11037

    Article  PubMed  CAS  Google Scholar 

  68. Coler RN et al (2010) A synthetic adjuvant to enhance and expand immune responses to influenza vaccines. PLoS One 5(10):e13677

    Article  PubMed  CAS  Google Scholar 

  69. Raman VS et al (2010) Applying TLR synergy in immunotherapy: implications in cutaneous leishmaniasis. J Immunol 185(3):1701–1710

    Article  PubMed  CAS  Google Scholar 

  70. Buwitt-Beckmann U et al (2005) Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35(1):282–289

    Article  PubMed  CAS  Google Scholar 

  71. Allison AC (1999) Squalene and squalane emulsions as adjuvants. Methods 19(1):87–93

    Article  PubMed  CAS  Google Scholar 

  72. Kalvodova L (2010) Squalene-based oil-in-water emulsion adjuvants perturb metabolism of neutral lipids and enhance lipid droplet formation. Biochem Biophys Res Commun 393(3):350–355

    Article  PubMed  CAS  Google Scholar 

  73. Brito LA et al (2011) An alternative renewable source of squalene for use in emulsion adjuvants. Vaccine 29(37):6262–6268

    Article  PubMed  CAS  Google Scholar 

  74. Kensil CR et al (1998) QS-21 and QS-7: purified saponin adjuvants. Dev Biol Stand 92:41–47

    PubMed  CAS  Google Scholar 

  75. Kensil CR, Wu JY, Soltysik S (1995) Structural and immunological characterization of the vaccine adjuvant QS-21. Pharm Biotechnol 6:525–541

    Article  PubMed  CAS  Google Scholar 

  76. Chapman PB et al (2000) Induction of antibodies against GM2 ganglioside by immunizing melanoma patients using GM2-keyhole limpet hemocyanin + QS21 vaccine: a dose–response study. Clin Cancer Res 6(3):874–879

    PubMed  CAS  Google Scholar 

  77. Moreno CA et al (1999) Preclinical evaluation of a synthetic Plasmodium falciparum MAP malaria vaccine in Aotus monkeys and mice. Vaccine 18(1–2):89–99

    Article  PubMed  CAS  Google Scholar 

  78. Hancock GE et al (1995) Formulation of the purified fusion protein of respiratory syncytial virus with the saponin QS-21 induces protective immune responses in Balb/c mice that are similar to those generated by experimental infection. Vaccine 13(4):391–400

    Article  PubMed  CAS  Google Scholar 

  79. Oliveira-Freitas E et al (2006) Acylated and deacylated saponins of Quillaja saponaria mixture as adjuvants for the FML-vaccine against visceral leishmaniasis. Vaccine 24(18):3909–3920

    Article  PubMed  CAS  Google Scholar 

  80. Soltysik S et al (1995) Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 13(15):1403–1410

    Article  PubMed  CAS  Google Scholar 

  81. Yan W et al (2010) Bryostatin-I: a dendritic cell stimulator for chemokines induction and a promising adjuvant for a peptide based cancer vaccine. Cytokine 52(3):238–244

    Article  PubMed  CAS  Google Scholar 

  82. Clamp A, Jayson GC (2002) The clinical development of the bryostatins. Anticancer Drugs 13(7):673–683

    Article  PubMed  CAS  Google Scholar 

  83. Pettit GR et al (1991) Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J Med Chem 34(11):3339–3340

    Article  PubMed  CAS  Google Scholar 

  84. Do Y et al (2004) Bryostatin-1 enhances the maturation and antigen-presenting ability of murine and human dendritic cells. Cancer Res 64(18):6756–6765

    Article  PubMed  CAS  Google Scholar 

  85. Li H et al (2006) IFN-gamma and T-bet expression in human dendritic cells from normal donors and cancer patients is controlled through mechanisms involving ERK-1/2-dependent and IL-12-independent pathways. J Immunol 177(6):3554–3563

    PubMed  CAS  Google Scholar 

  86. Yan H, Chen W (2010) 3′,5′-Cyclic diguanylic acid: a small nucleotide that makes big impacts. Chem Soc Rev 39(8):2914–2924

    Article  PubMed  CAS  Google Scholar 

  87. Chen W, Kuolee R, Yan H (2010) The potential of 3′,5′-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine 28(18):3080–3085

    Article  PubMed  CAS  Google Scholar 

  88. Ebensen T et al (2011) Bis-(3′,5′)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 29(32):5210–5220

    Article  PubMed  CAS  Google Scholar 

  89. Madhun AS et al (2011) Intranasal c-di-GMP-adjuvanted plant-derived H5 influenza vaccine induces multifunctional Th1 CD4+ cells and strong mucosal and systemic antibody responses in mice. Vaccine 29(31):4973–4982

    Article  PubMed  CAS  Google Scholar 

  90. Bode C et al (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511

    Article  PubMed  CAS  Google Scholar 

  91. Klinman DM et al (2009) CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv Drug Deliv Rev 61(3):248–255

    Article  PubMed  CAS  Google Scholar 

  92. Klinman D et al (2008) Synthetic oligonucleotides as modulators of inflammation. J Leukoc Biol 84(4):958–964

    Article  PubMed  CAS  Google Scholar 

  93. Ballas ZK et al (2001) Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J Immunol 167(9):4878–4886

    PubMed  CAS  Google Scholar 

  94. Stacey KJ, Blackwell JM (1999) Immunostimulatory DNA as an adjuvant in vaccination against Leishmania major. Infect Immun 67(8):3719–3726

    PubMed  CAS  Google Scholar 

  95. Cui Z, Qiu F (2006) Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol Immunother 55(10):1267–1279

    Article  PubMed  CAS  Google Scholar 

  96. Luganini A et al (2008) Phosphorothioate-modified oligodeoxynucleotides inhibit human cytomegalovirus replication by blocking virus entry. Antimicrob Agents Chemother 52(3):1111–1120

    Article  PubMed  CAS  Google Scholar 

  97. Sasaki S et al (1998) Adjuvant effect of Ubenimex on a DNA vaccine for HIV-1. Clin Exp Immunol 111(1):30–35

    Article  PubMed  CAS  Google Scholar 

  98. Peng HJ et al (2004) Comparison of different adjuvants of protein and DNA vaccination for the prophylaxis of IgE antibody formation. Vaccine 22(5–6):755–761

    PubMed  CAS  Google Scholar 

  99. Huang CF et al (2012) Induction of specific Th1 responses and suppression of IgE antibody formation by vaccination with plasmid DNA encoding Cyn d 1. Int Arch Allergy Immunol 158(2):142–150

    Article  PubMed  CAS  Google Scholar 

  100. Lu H et al (2008) Enhancing effects of the chemical adjuvant levamisole on the DNA vaccine pVIR-P12A-IL18-3C. Microbiol Immunol 52(9):440–446

    Article  PubMed  CAS  Google Scholar 

  101. Alavian SM, Tabatabaei SV (2010) Effects of oral levamisole as an adjuvant to hepatitis B vaccine in adults with end-stage renal disease: a meta-analysis of controlled clinical trials. Clin Ther 32(1):1–10

    Article  PubMed  CAS  Google Scholar 

  102. Smahel M et al (2011) Systemic administration of CpG oligodeoxynucleotide and levamisole as adjuvants for gene-gun-delivered antitumor DNA vaccines. Clin Dev Immunol 2011:176759

    Article  PubMed  CAS  Google Scholar 

  103. Wang B et al (1993) Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 90(9):4156–4160

    Article  PubMed  CAS  Google Scholar 

  104. Jin H et al (2004) Effect of chemical adjuvants on DNA vaccination. Vaccine 22(21–22):2925–2935

    Article  PubMed  CAS  Google Scholar 

  105. McLachlan JB et al (2008) Mast cell activators: a new class of highly effective vaccine adjuvants. Nat Med 14(5):536–541

    Article  PubMed  CAS  Google Scholar 

  106. Stevenson HC et al (1991) Levamisole—known effects on the immune-system, clinical-results, and future applications to the treatment of cancer. J Clin Oncol 9(11):2052–2066

    PubMed  CAS  Google Scholar 

  107. Suda H et al (1976) Inhibition of aminopeptidase-B and leucine aminopeptidase by bestatin and its stereoisomer. Arch Biochem Biophys 177(1):196–200

    Article  PubMed  CAS  Google Scholar 

  108. Umezawa H et al (1976) Bestatin, an inhibitor of aminopeptidase-B, produced by actinomycetes. J Antibiot 29(1):97–99

    Article  PubMed  CAS  Google Scholar 

  109. Brown TCK (2012) History of pediatric regional anesthesia. Pediatr Anaesth 22(1):3–9

    Article  CAS  Google Scholar 

  110. Miller RL et al (1999) Treatment of primary herpes simplex virus infection in guinea pigs by imiquimod. Antiviral Res 44(1):31–42

    Article  PubMed  CAS  Google Scholar 

  111. Sauder DN (2000) Immunomodulatory and pharmacologic properties of imiquimod. J Am Acad Dermatol 43(1):S6–S11

    Article  PubMed  CAS  Google Scholar 

  112. Suzuki H et al (2000) Imiquimod, a topical immune response modifier, induces migration of Langerhans cells. J Invest Dermatol 114(1):135–141

    Article  PubMed  CAS  Google Scholar 

  113. Tomai MA et al (2007) Resiquimod and other immune response modifiers as vaccine adjuvants. Expert Rev Vaccines 6(5):835–847

    Article  PubMed  CAS  Google Scholar 

  114. Ma F, Zhang J, Zhang C (2010) The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol 7(5):381–388

    Article  PubMed  CAS  Google Scholar 

  115. Dzopalic T et al (2010) Loxoribine, a selective Toll-like receptor 7 agonist, induces maturation of human monocyte-derived dendritic cells and stimulates their Th-1- and Th-17-polarizing capability. Int Immunopharmacol 10(11):1428–1433

    Article  PubMed  CAS  Google Scholar 

  116. Sharma BS et al (1991) Potentiation of the efficacy of murine L1210 leukemia vaccine by a novel immunostimulator 7-thia-8-oxoguanosine: increased survival after immunization with vaccine plus 7-thia-8-oxoguanosine. Cancer Immunol Immunother 33(2):109–114

    Article  PubMed  CAS  Google Scholar 

  117. McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11(5):494–502

    Article  PubMed  CAS  Google Scholar 

  118. Ripphausen P et al (2010) Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem 53(24):8461–8467

    Article  PubMed  CAS  Google Scholar 

  119. Bajorath J (2010) Computational studies, virtual screening, and theoretical molecular models. J Med Chem 53(1):1–2

    Article  PubMed  CAS  Google Scholar 

  120. Hattotuwagama CK, Davies MN, Flower DR (2006) Receptor-ligand binding sites and virtual screening. Curr Med Chem 13(11):1283–1304

    Article  PubMed  CAS  Google Scholar 

  121. Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182

    Article  PubMed  CAS  Google Scholar 

  122. Flower DR (1998) DISSIM: a program for the analysis of chemical diversity. J Mol Graph Model 16(4–6):239–253, 264

    Google Scholar 

  123. Davis AM et al (2005) Components of successful lead generation. Curr Top Med Chem 5(4):421–439

    Article  PubMed  CAS  Google Scholar 

  124. Lagorce D et al (2011) The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 27(14):2018–2020

    Article  PubMed  CAS  Google Scholar 

  125. Lagorce D et al (2008) FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 9:396

    Article  PubMed  CAS  Google Scholar 

  126. Miteva MA et al (2006) FAF-drugs: free ADME/tox filtering of compound collections. Nucleic Acids Res 34(Web Server issue):W738–W744

    Article  PubMed  CAS  Google Scholar 

  127. Khan MT, Sylte I (2007) Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules. Curr Drug Discov Technol 4(3):141–149

    Article  PubMed  CAS  Google Scholar 

  128. Khan MT (2010) Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Curr Drug Metab 11(4):285–295

    Article  PubMed  CAS  Google Scholar 

  129. Moroy G et al (2012) Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 17(1–2):44–55

    Article  PubMed  CAS  Google Scholar 

  130. Charoenvit Y et al (2004) CEL-1000—a peptide with adjuvant activity for Th1 immune responses. Vaccine 22(19):2368–2373

    Article  PubMed  CAS  Google Scholar 

  131. Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 338(7):436–445

    Article  PubMed  CAS  Google Scholar 

  132. Rees S, Morrow D, Kenakin T (2002) GPCR drug discovery through the exploitation of allosteric drug binding sites. Receptors Channels 8(5–6):261–268

    Article  PubMed  CAS  Google Scholar 

  133. Gether U et al (2002) Structural basis for activation of G-protein-coupled receptors. Pharmacol Toxicol 91(6):304–312

    Article  PubMed  CAS  Google Scholar 

  134. Feng Y et al (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272(5263):872–877

    Article  PubMed  CAS  Google Scholar 

  135. Bayry J et al (2008) In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proc Natl Acad Sci U S A 105(29):10221–10226

    Article  PubMed  CAS  Google Scholar 

  136. Davies MN et al (2009) Toward the discovery of vaccine adjuvants: coupling in silico screening and in vitro analysis of antagonist binding to human and mouse CCR4 receptors. PLoS One 4(11):e8084

    Article  PubMed  CAS  Google Scholar 

  137. Pere H et al (2011) A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood 118(18):4853–4862

    Article  PubMed  CAS  Google Scholar 

  138. Schijns VE, Tangeras A (2005) Vaccine adjuvant technology: from theoretical mechanisms to practical approaches. Dev Biol (Basel) 121:127–134

    CAS  Google Scholar 

  139. Degen WG, Jansen T, Schijns VE (2003) Vaccine adjuvant technology: from mechanistic concepts to practical applications. Expert Rev Vaccines 2(2):327–335

    Article  PubMed  CAS  Google Scholar 

  140. Schijns VE (2003) Mechanisms of vaccine adjuvant activity: initiation and regulation of immune responses by vaccine adjuvants. Vaccine 21(9–10):829–831

    Article  PubMed  Google Scholar 

  141. Schijns VE (2000) Immunological concepts of vaccine adjuvant activity. Curr Opin Immunol 12(4):456–463

    Article  PubMed  CAS  Google Scholar 

  142. Garcon N, Van Mechelen M (2011) Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 10(4):471–486

    Article  PubMed  CAS  Google Scholar 

  143. Schellack C et al (2006) IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine 24(26):5461–5472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I should like to thank all my colleagues who have influenced me positively or negatively through my career, and have thus been instrumental in forming the opinions expressed above. In particular, Dr. David Tough, Dr. Jagedesch Bayry, Professor Peter Beverley, and Dr. Elma Tchillian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren R. Flower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flower, D.R. (2013). Towards the Systematic Discovery of Immunomodulatory Adjuvants. In: Flower, D., Perrie, Y. (eds) Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines. Immunomics Reviews:, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5070-2_9

Download citation

Publish with us

Policies and ethics