Skip to main content

Strategies for the Salt Tolerance in Bacteria and Archeae and its Implications in Developing Crops for Adverse Conditions

  • Chapter
  • First Online:
Plant Acclimation to Environmental Stress

Abstract

Salinity is one of the major problems limiting the crop productivity worldwide. Interestingly, halophiles are an interesting class of organisms adapted to moderate and hyper saline environments. In Archaea, the most salt-requiring microorganisms belong to halobacteria. Halophiles can be distinguished into different following categories: extreme halophiles (2.5–5.2 M salt), borderline extreme halophiles (1.5–4.0 M salt), moderate halophiles (0.5–2.5 M salt), and halotolerant microorganisms that do not require salt for growth but grow well up to reasonably high salt concentrations. The extreme halotolerant groups have growth range above 2.5 M salt. The halophilic proteins are highly acidic in nature and majority would denature in low salt concentration. Most halophilic bacteria and the halophilic methanogenic archaea a number of such organic solutes like glycine betaine, ectoine and other amino acid derivatives, sugars and sugar alcohols. Bacteria and Archaea have developed two basic mechanisms to cope with osmotic stress. The “salt-in-cytoplasm mechanism” involves adjusting the salt concentration in the cytoplasm. The “organic-osmolyte mechanism” involves accumulation of uncharged and highly water-soluble organic compounds to maintain an osmotic equilibrium with the surrounding medium which can be exploited for developing stress-tolerant crop varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alia HH, Chen THH, Murata N (1998) Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ 21:232–239

    Article  CAS  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234

    Article  PubMed  CAS  Google Scholar 

  • Bolhuis H, Palm P, Wende A (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169

    Article  PubMed  Google Scholar 

  • Boscari A, Mandon K, Dupont L (2002) BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. J Bacteriol 184:2654–2663

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    PubMed  CAS  Google Scholar 

  • Brown AD (1990) Microbial Water Stress Physiology. Principles and Perspectives. John Wiley & Sons, Chichester England

    Google Scholar 

  • Bullock C (2000) The Archaea: a biochemical perspective. Biochem Mol Biol Edu 28:186–190

    CAS  Google Scholar 

  • Cho BC (2005) Heterotrophic flagellates in hypersaline waters. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya, vol 9, Cellular origin, life in extreme habitats and astrobiology. Springer, Netherlands, pp 541–549

    Chapter  Google Scholar 

  • Ciulla RA, Diaz MR, Taylor BF (1997) Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment. Appl Environ Microbiol 63:220–226

    PubMed  CAS  Google Scholar 

  • Deshnium P, Los DA, Hayashi H (1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29:897–907

    Article  PubMed  CAS  Google Scholar 

  • Dodia MS, Rawal CM, Bhimani HG, Joshi RH, Khare SK, Singh SP (2008a) Purification and stability characteristics of an alkaline serine protease from a newly isolated Haloalkaliphilic bacterium sp. AH-6. J Ind Microbiol Biotechnol 35(2):121–132

    Article  PubMed  CAS  Google Scholar 

  • Dodia MS, Bhimani HG, Rawal CM, Joshi RH, Singh SP (2008b) Salt dependent resistance against chemical denaturation of alkaline protease from a newly isolated Haloalkaliphilic Bacillus sp. Bioresour Technol 99:6223–6227

    Article  PubMed  CAS  Google Scholar 

  • Doronina NV, Trotsenko YA, Tourova TP (2000) Methylarcula marina gen. nov. sp. nov. and methylarcula terricola sp., nov.: novel aerobic moderately halophilic facultatively ­methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50:1849–1859

    PubMed  CAS  Google Scholar 

  • Doronina NV, Darmaeva TD, Trotsenko YA (2003) Methylophagaalcalica sp. nov. A novel ­alkaliphilic and moderately halophilic obligately methylotrophic bacterium from an East Mangolian Saline soda lake. Int J Syst Evol Microbiol 53:223–229

    Article  PubMed  CAS  Google Scholar 

  • Falb M, Pfeiffer F, Palm P (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15:1336–1343

    Article  PubMed  CAS  Google Scholar 

  • Galinski EA (1986) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328

    Article  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328

    PubMed  CAS  Google Scholar 

  • Galinski EA, Truper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Galinski EA, Pfeiffer HP, Truper HG (1985) 1, 4, 5, 6-Tetrahydro-2- methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem 149:135–139

    Article  PubMed  CAS  Google Scholar 

  • Gorham J (1996) Mechanisms of salt tolerance of halophytes. In: Choukr-Allah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Dekker, New York, pp 31–53

    Google Scholar 

  • Gupta A, Roy I, Patel RK, Singh SP, Khare SK, Gupta MN (2005) One-step purification and characterization of an alkaline protease from Haloalkaliphilic Bacillus sp. J Chromatogr A 1075:103–108

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Alia, Mustardy L (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycine-betaine and enhanced tolerance to salt and cold stress. Plant J 12(1):133–142

    Google Scholar 

  • Holmberg N (1996) Metabolic engineering: approaches toward improved stress tolerance in microorganisms and plants. Ph.D. thesis, Lund University, Lund

    Google Scholar 

  • Holmstrom KO, Welin B, Mandal A, Kristiansdottir I, Teeri TH, Lamark T, Strum AR, Palva ET (1994) Production of the Escherichia coil betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants. Plant J 6:749–758

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K (2008) Past, present and future of extremophiles. Extremophiles 12:1–2

    Article  PubMed  Google Scholar 

  • Huang J, Hirji R, Adam L (2000) Genetic engineering of glycine-betaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Article  PubMed  CAS  Google Scholar 

  • Joshi RH, Dodia MS, Singh SP (2008) Optimization of culture parameters for production of ­commercially valuable alkaline protease from a Haloalkaliphilic bacterium isolated from sea water. Biotechnol Bioprocess Eng 13:552–559

    Article  CAS  Google Scholar 

  • Kahulmann AU, Bremer E (2002) Osmotically regulated synthesis of compatible solute ectoine in Bacillus pasteruii and related bacillus spp. Appl Environ Microbiol 68:772–783

    Article  Google Scholar 

  • Kappes RM, Kempf B, Bremer E (1996) Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 178:5071–5079

    PubMed  CAS  Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11:1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Kishitani S, Watanabe K, Yasuda S (1994) Accumulation of glycine-betaine during cold-­acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ 17:89–95

    Article  CAS  Google Scholar 

  • Kunte HJ (2006) Osmoregulation in bacteria: compatible solute accumulation and osmosensing. Environ Chem 3:94–99

    Article  CAS  Google Scholar 

  • Kushner DJ (1978) Life in high salt and solute concentrations. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–368

    Google Scholar 

  • Lai MC, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358

    PubMed  CAS  Google Scholar 

  • Lanyi JK (1974) Salt dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    PubMed  CAS  Google Scholar 

  • Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25

    Article  PubMed  Google Scholar 

  • Lilius G, Holmberg N, Bulow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14:177–180

    Article  CAS  Google Scholar 

  • Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 276(4):66–71

    Article  Google Scholar 

  • McCue KF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8:358–362

    Article  CAS  Google Scholar 

  • Muller V, Oren A (2003) Metabolism of chloride in halophilic prokaryotes. Extremophiles 7(4):261–266

    Article  PubMed  Google Scholar 

  • Muller V, Spanheimer R, Santos H (2005) Stress response by solute accumulation in archaea. Curr Opin Microbiol 8(6):729–736

    Article  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of Salinity Tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nada AMK, Refaat MH, Abdel-Sabour MS (2011) Molecular studies on EctC gene (Ectoine) in some halophilic bacterial isolates. Researcher 3(2):34–42

    Google Scholar 

  • Naidu BP, Paleg LG, Aspinall D (1991) Amino-acid and glycine betaine accumulation in ­cold-stressed wheat seedlings. Phytochemistry 30:407–409

    Article  CAS  Google Scholar 

  • Nakayama H, Yoshida K, Ono H (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol 122:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J et al (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci 97(22):12176–12181

    Article  PubMed  CAS  Google Scholar 

  • Nowlan B, Dodia MS, Singh SP, Patel BKC (2006) Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. Int J Syst Evol Microbiol 56(5):1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Nuccio M, Russell B, Nolte K, Rathinasabapathi B, Gage D, Hanson A (1998) The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J 16(4):487–496

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, Russell BL, Nolte KD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2(2):128–134

    Article  PubMed  CAS  Google Scholar 

  • Nyyssola A, Kerovuo J, Kaukinen P (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biochem 275(29):22196–22201

    CAS  Google Scholar 

  • Oren A (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol 32:4–9

    Article  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Scientific, Dordrecht

    Book  Google Scholar 

  • Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York, pp 263–282

    Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31(8):825–834

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

    Article  PubMed  CAS  Google Scholar 

  • Patel RK, Dodia MS, Singh SP (2005) Extracellular alkaline protease from a newly isolated Haloalkaliphilic Bacillus sp.: production and optimization. Process Biochem 40(11):3569–3575

    Article  CAS  Google Scholar 

  • Patel RK, Dodia MS, Singh SP (2006) Purification and characterization of alkaline protease from a newly isolated Haloalkaliphilic Bacillus sp. Process Biochem 41(9):2002–2009

    Article  CAS  Google Scholar 

  • Pfluger K, Baumann S, Gottschalk G (2003) Lysine-2, 3-aminomutase and β-lysine ­acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of ­Nε-acetyl-β-lysine and growth in high salinity. Appl Environ Microbiol 69:6047–6055

    Article  PubMed  CAS  Google Scholar 

  • Purohit MK, Singh SP (2009) Assessment of various methods for extraction of Metagenomic DNA from saline habitats of Coastal Gujarat (India) to explore Molecular Diversity. Lett Appl Microbiol 49:338–344

    Article  PubMed  CAS  Google Scholar 

  • Ram K, Singh SP, Kapoor S, Khare SK (2010) A novel organic solvent tolerant alkaline protease from a newly isolated Geomicrobium sp. EMB2 (MTTC 10310): production optimization by response surface methodology. N Biotechnol 28(2):136–145

    Google Scholar 

  • Rathinasabapathi B, McCue KR, Gage DA (1994) Metabolic engineering of glycine betaine ­synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 193:155–162

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1:5

    Article  PubMed  Google Scholar 

  • Roberts MF (2006) Characterization of organic compatible solutes of halotolerant and halophilic microorganisms. In: Rainey FA, Oren A (eds) Methods in microbiology, extremophiles, vol 35. Academic, Amsterdam, pp 615–647

    Google Scholar 

  • Roberts MF, Lai MC, Gunsalus RP (1992) Biosynthetic pathway of the osmolytes Nε-acetyl-β-lysine, β-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear ­magnetic resonance analyses. J Bacteriol 174:6688–6693

    PubMed  CAS  Google Scholar 

  • Robertson DE, Lai MC, Gunsalus RP, Roberts MF (1992a) Composition, variation, and dynamics of major compatible solutes in Methanohalophilus strain FDF1. Appl Environ Microbiol 58:2438–2443

    PubMed  CAS  Google Scholar 

  • Robertson DE, Noll D, Roberts MF (1992b) Free amino acid dynamics in marine methanogens. β-Amino acids as compatible solutes. J Biol Chem 267:14893–14901

    PubMed  CAS  Google Scholar 

  • Rudulier DL, Strom AR, Dandekar AM (1984) Molecular biology of osmoregulation. Science 224(4653):1064–1068

    Article  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement for stress tolerance. J Exp Biol 51(342):81–88

    CAS  Google Scholar 

  • Sakamoto A, Alia, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of ­glycine-betaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Google Scholar 

  • Shazia A (2004). Evaluation of the role of salt tolerant bacteria in development resistance of plants to salt stress conditions. Ph.D. thesis, University of Punjab, Lahore.

    Google Scholar 

  • Siddhapura P, Vanparia S, Purohit M, Singh SP (2010) Comparative studies on the extraction of metagenomic DNA from the saline habitats of Coastal Gujarat and Sambhar Lake, Rajasthan (India) in prospect of molecular diversity and search for novel biocatalysts. Int J Biol Macromol 47:375–379

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD, Gahan CGM, Abee T (1999) Identification and disruption of BetL, a secondary ­glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl Env Microbiol 65:2078–2083

    CAS  Google Scholar 

  • Sowers KR, Gunsalus RP (1995) Halotolerance in Methanosarcina spp.: role of Nε-acetyl-β-lysine, β-glutamate, glycine betaine and K  +  as compatible solutes for osmotic adaptation. Appl Environ Microbiol 61:4382–4388

    PubMed  CAS  Google Scholar 

  • Sowers KR, Robertson DE, Noll D, Gunsalus RP, Roberts MF (1990) Nε-acetyl-β-lysine: an osmolyte synthesized by methanogenic bacteria. Proc Natl Acad Sci 87:9083–9087

    Article  PubMed  CAS  Google Scholar 

  • Thumar JT, Singh SP (2007) Two - step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Chromatogr B 854:198–203

    Article  CAS  Google Scholar 

  • Thumar JT, Singh SP (2009) Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Ind Microbiol Biotechnol 36:211–218

    Article  PubMed  CAS  Google Scholar 

  • Truper HG, Severin J, Wolhfarth A, Muller E, Galinksi EA (1991) Halophily, taxonomy, ­phylogeny and nomenclature. In: Rodriguez-Valera F (ed) General and applied aspects of halophilism. Plenum, New York, pp 3–7

    Chapter  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of aerobic moderately halophilic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  CAS  Google Scholar 

  • Wang Q, Xu W, Xue Q (2010) Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J Zhejiang Univ Sci B 11:851–861

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, S.P., Raval, V., Purohit, M.K. (2013). Strategies for the Salt Tolerance in Bacteria and Archeae and its Implications in Developing Crops for Adverse Conditions. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5001-6_4

Download citation

Publish with us

Policies and ethics