Skip to main content

Skin and Transdermal Drug Delivery

Advantages and Challenges

  • Chapter
  • First Online:
Microdialysis in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 4))

  • 1381 Accesses

Abstract

This chapter will give a review of microdialysis sampling in the skin with emphasis on dermal sampling and topical application of drugs and other substances in the form of transdermal patches, solutions, or topical formulations. Microdialysis as a research technique is suitable for a number of different study designs for sampling in the skin or subcutaneous tissues. This versatility includes the option of preclinical studies in animals as well as ex vivo human skin set ups. Alterations in the barrier properties of the skin, introduced intentionally or associated with skin diseases, will alter the penetration of drugs and other substances considerably. Furthermore, the effect of even small alterations in a topical formulation can be detected by simultaneous sampling in several areas in the same individual, enabling studies of bioavailability and bioequivalence in study groups of relatively few volunteers or patients. Whenever the dermis is the target tissue, dermal microdialysis can be considered to be the method of choice for acquisition of human in vivo data. The current status with regulatory authorities as well as the study planning for successful sampling will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson C, Andersson T, Molander M (1991) Ethanol absorption across human skin measured by in vivo microdialysis technique. Acta Derm Venereol 71(5):389–393

    PubMed  CAS  Google Scholar 

  • Anderson C, Andersson T, Andersson RG (1992) In vivo microdialysis estimation of histamine in human skin. Skin Pharmacol 5(3):177–183

    Article  PubMed  CAS  Google Scholar 

  • Anderson C, Andersson T, Wardell K (1994) Changes in skin circulation after insertion of a microdialysis probe visualized by laser Doppler perfusion imaging. J Invest Dermatol 102(5):807–811

    Article  PubMed  CAS  Google Scholar 

  • Au WL, Skinner MF, Benfeldt E, Verbeeck RK, Kanfer I (2012) Application of dermal microdialysis for the determination of bioavailability of clobetasol propionate applied to the skin of human subjects. Skin Pharmacol Physiol 25(1):17–24

    Article  PubMed  CAS  Google Scholar 

  • Ault JM, Lunte CE, Meltzer NM, Riley CM (1992) Microdialysis sampling for the investigation of dermal drug transport. Pharm Res 9(10):1256–1261

    Article  PubMed  CAS  Google Scholar 

  • Ault JM, Riley CM, Meltzer NM, Lunte CE (1994) Dermal microdialysis sampling in vivo. Pharm Res 11(11):1631–1639

    Article  PubMed  CAS  Google Scholar 

  • Benfeldt E (1999) In vivo microdialysis for the investigation of drug levels in the dermis and the effect of barrier perturbation on cutaneous drug penetration. Studies in hairless rats and human subjects. Acta Derm Venereol Suppl (Stockh) 206:1–59

    CAS  Google Scholar 

  • Benfeldt E, Groth L (1998) Feasibility of measuring lipophilic or protein-bound drugs in the dermis by in vivo microdialysis after topical or systemic drug administration. Acta Derm Venereol 78(4):274–278

    Article  PubMed  CAS  Google Scholar 

  • Benfeldt E, Serup J (1999) Effect of barrier perturbation on cutaneous penetration of salicylic acid in hairless rats: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Arch Dermatol Res 291(9):517–526

    Article  PubMed  CAS  Google Scholar 

  • Benfeldt E, Serup J, Menne T (1999) Effect of barrier perturbation on cutaneous salicylic acid penetration in human skis: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Br J Dermatol 140(4):739–748

    Article  PubMed  CAS  Google Scholar 

  • Benfeldt E, Hansen SH, Volund A, Menne T, Shah VP (2007) Bioequivalence of topical formulations in humans: evaluation by dermal microdialysis sampling and the dermatopharmacokinetic method. J Invest Dermatol 127(1):170–178

    Article  PubMed  CAS  Google Scholar 

  • Bielecka-Grzela S, Klimowicz A (2003) Evaluation of ofloxacin penetration into the skin after a single oral dose assessed by cutaneous microdialysis. Pol J Pharmacol 55(4):613–618

    PubMed  CAS  Google Scholar 

  • Borg N, Gotharson E, Benfeldt E, Groth L, Stahle L (1999) Distribution to the skin of penciclovir after oral famciclovir administration in healthy volunteers: comparison of the suction blister technique and cutaneous microdialysis. Acta Derm Venereol 79(4):274–277

    Article  PubMed  CAS  Google Scholar 

  • Brunner M, Dehghanyar P, Seigfried B, Martin W, Menke G, Muller M (2005) Favourable dermal penetration of diclofenac after administration to the skin using a novel spray gel formulation. Br J Clin Pharmacol 60(5):573–577

    Article  PubMed  CAS  Google Scholar 

  • Brunner M, Davies D, Martin W, Leuratti C, Lackner E, Muller M (2011) A new topical formulation enhances relative diclofenac bioavailability in healthy male subjects. Br J Clin Pharmacol 71(6):852–859. doi:10.1111/j.1365-2125.2011.03914.x

    Article  PubMed  CAS  Google Scholar 

  • Carneheim C, Stahle L (1991) Microdialysis of lipophilic compounds—a methodological study. Pharmacol Toxicol 69(5):378–380

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedula A, Joshi DP, Anderson C, Morris R, Sembrowich WL, Banga AK (2005) Dermal, subdermal, and systemic concentrations of granisetron by iontophoretic delivery. Pharm Res 22(8):1313–1319

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange EC, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL Jr, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BW, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H (2007) AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res 24(5):1014–1025

    Article  PubMed  CAS  Google Scholar 

  • Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20(3):148–154

    Article  PubMed  CAS  Google Scholar 

  • Dancik Y, Anissimov YG, Jepps OG, Roberts MS (2012) Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application. Br J Clin Pharmacol 73(4):564–578

    Article  PubMed  CAS  Google Scholar 

  • Fulzele SV, Babu RJ, Ahaghotu E, Singh M (2007) Estimation of proinflammatory biomarkers of skin irritation by dermal microdialysis following exposure with irritant chemicals. Toxicology 237(1–3):77–88

    Article  PubMed  CAS  Google Scholar 

  • Groth L, Serup J (1998) Cutaneous microdialysis in man: effects of needle insertion trauma and anaesthesia on skin perfusion, erythema and skin thickness. Acta Derm Venereol 78(1):5–9

    Article  PubMed  CAS  Google Scholar 

  • Hegemann L, Forstinger C, Partsch B, Lagler I, Krotz S, Wolff K (1995) Microdialysis in cutaneous pharmacology: kinetic analysis of transdermally delivered nicotine. J Invest Dermatol 104(5):839–843

    Article  PubMed  CAS  Google Scholar 

  • Holmgaard R, Nielsen JB, Benfeldt E (2010) Microdialysis sampling for investigations of bioavailability and bioequivalence of topically administered drugs: current state and future perspectives. Skin Pharmacol Physiol 23(5):225–243

    Article  PubMed  CAS  Google Scholar 

  • Holmgaard R, Benfeldt E, Nielsen JB, Gatschelhofer C, Sorensen JA, Höfferer C, Bodenlenz M, Pieber TR, Sinner F (2012) Comparison of open-flow microperfusion and microdialysis methodologies when sampling topically applied fentanyl and benzoic acid in human dermis ex vivo. Pharm Res 29(7):1808–1820

    Article  PubMed  CAS  Google Scholar 

  • Holmgaard R, Benfeldt E, Bangsgaard N, Sorensen JA, Brosen K, Nielsen F, Nielsen JB (2012b) Probe depth matters in dermal microdialysis sampling of topical penetration. An ex vivo study in human skin. Skin Pharmacol Physiol 25(1):9–16

    Article  CAS  Google Scholar 

  • Incecayir T, Agabeyoglu I, Derici U, Sindel S (2011) Assessment of topical bioequivalence using dermal microdialysis and tape stripping methods. Pharm Res 28(9):2165–2175. doi:10.1007/s11095-011-0444-3

    Article  PubMed  CAS  Google Scholar 

  • Joukhadar C, Frossard M, Mayer BX, Brunner M, Klein N, Siostrzonek P, Eichler HG, Muller M (2001) Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 29(2):385–391

    Article  PubMed  CAS  Google Scholar 

  • Kellogg DL, Zhao JL, Wu Y (2008) Neuronal nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. J Physiol (London) 586(3):847–857

    Article  CAS  Google Scholar 

  • Klimowicz A, Bielecka-Grzela S, Tomaszewska U (2002) A simple and rapid liquid chromatographic method for the determination of metronidazole and its hydroxymetabolite in plasma and cutaneous microdialysates. Acta Pol Pharm 59(5):327–331

    PubMed  CAS  Google Scholar 

  • Klimowicz A, Farfal S, Bielecka-Grzela S (2007) Evaluation of skin penetration of topically applied drugs in humans by cutaneous microdialysis: acyclovir vs. salicylic acid. J Clin Pharm Ther 32(2):143–148

    Article  PubMed  CAS  Google Scholar 

  • Kreilgaard M (2001) Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis. Pharm Res 18(3):367–373

    Article  PubMed  CAS  Google Scholar 

  • Kreilgaard M (2002) Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev 54(Suppl 1):S77–S98

    Article  PubMed  CAS  Google Scholar 

  • Kreilgaard M, Kemme MJ, Burggraaf J, Schoemaker RC, Cohen AF (2001) Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics. Pharm Res 18(5):593–599

    Article  PubMed  CAS  Google Scholar 

  • Krogstad AL, Jansson PA, Gisslen P, Lonnroth P (1996) Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br J Dermatol 134(6):1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Lionberger RA (2008) FDA critical path initiatives: opportunities for generic drug development. AAPS J 10(1):103–109

    Article  PubMed  Google Scholar 

  • Mathy FX, Lombry C, Verbeeck RK, Preat V (2005) Study of the percutaneous penetration of flurbiprofen by cutaneous and subcutaneous microdialysis after iontophoretic delivery in rat. J Pharm Sci 94(1):144–152

    Article  PubMed  CAS  Google Scholar 

  • McCleverty D, Lyons R, Henry B (2006) Microdialysis sampling and the clinical determination of topical dermal bioequivalence. Int J Pharm 308(1–2):1–7

    Article  PubMed  CAS  Google Scholar 

  • Morgan CJ, Renwick AG, Friedmann PS (2003) The role of stratum corneum and dermal microvascular perfusion in penetration and tissue levels of water-soluble drugs investigated by microdialysis. Br J Dermatol 148(3):434–443

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Schmid R, Wagner O, Vonosten B, Shayganfar H, Eichler HG (1995) In vivo characterization of transdermal drug transport by microdialysis. J Controlled Release 37(1–2):49–57

    Article  Google Scholar 

  • Muller M, Mascher H, Kikuta C, Schafer S, Brunner M, Dorner G, Eichler HG (1997) Diclofenac concentrations in defined tissue layers after topical administration. Clin Pharmacol Ther 62(3):293–299

    Article  PubMed  CAS  Google Scholar 

  • Ortiz PG, Hansen SH, Shah VP, Menne T, Benfeldt E (2008) The effect of irritant dermatitis on cutaneous bioavailability of a metronidazole formulation, investigated by microdialysis and dermatopharmacokinetic method. Contact Dermatitis 59(1):23–30

    Article  PubMed  CAS  Google Scholar 

  • Ortiz PG, Hansen SH, Shah VP, Menne T, Benfeldt E (2009) Impact of adult atopic dermatitis on topical drug penetration: assessment by cutaneous microdialysis and tape stripping. Acta Derm Venereol 89(1):33–38

    Google Scholar 

  • Ortiz PG, Hansen SH, Shah VP, Sonne J, Benfeldt E (2011) Are marketed topical metronidazole creams bioequivalent? Evaluation by in vivo microdialysis sampling and tape stripping methodology. Skin Pharmacol Physiol 24(1):44–53

    Article  Google Scholar 

  • Petersen LJ (1998) Measurement of histamine release in intact human skin by microdialysis technique. Clinical and experimental findings. Dan Med Bull 45(4):383–401

    PubMed  CAS  Google Scholar 

  • Petersen LJ, Skov PS, Bindslev-Jensen C, Sondergaard J (1992) Histamine release in immediate-type hypersensitivity reactions in intact human skin measured by microdialysis. A preliminary study. Allergy 47(6):635–637

    Article  PubMed  CAS  Google Scholar 

  • Sandberg C, Halldin CB, Ericson MB, Larko O, Krogstad AL, Wennberg AM (2008) Bioavailability of aminolaevulinic acid and methylaminolaevulinate in basal cell carcinomas: a perfusion study using microdialysis in vivo. Br J Dermatol 159(5):1170–1176

    PubMed  CAS  Google Scholar 

  • Schmidt S, Banks R, Kumar V, Rand KH, Derendorf H (2008) Clinical microdialysis in skin and soft tissues: an update. J Clin Pharmacol 48(3):351–364

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Wang A, Yuan D, Saso Y, Hosoya O, Chono S, Morimoto K (2004) Excised porcine skin experimental systems to validate quantitative microdialysis methods for determination of drugs in skin after topical application. J Controlled Release 100(2):181–189

    Article  CAS  Google Scholar 

  • Shah VP, Flynn GL, Yacobi A, Maibach HI, Bon C, Fleischer NM, Franz TJ, Kaplan SA, Kawamoto J, Lesko LJ, Marty JP, Pershing LK, Schaefer H, Sequeira JA, Shrivastava SP, Wilkin J, Williams RL (1998) Bioequivalence of topical dermatological dosage forms—methods of evaluation of bioequivalence. Pharm Res 15(2):167–171

    Article  PubMed  CAS  Google Scholar 

  • Shinkai N, Korenaga K, Takizawa H, Mizu H, Yamauchi H (2008a) Percutaneous penetration of felbinac after application of transdermal patches: relationship with pharmacological effects in rats. J Pharm Pharmacol 60(1):71–76

    Article  PubMed  CAS  Google Scholar 

  • Shinkai N, Korenaga K, Mizu H, Yamauchi H (2008b) Intra-articular penetration of ketoprofen and analgesic effects after topical patch application in rats. J Controlled Release 131(2):107–112

    Article  CAS  Google Scholar 

  • Shinkai N, Korenaga K, Okumura Y, Mizu H, Yamauchi H (2011) Microdialysis assessment of percutaneous penetration of ketoprofen after transdermal administration to hairless rats and domestic pigs. Eur J Pharm Biopharm 78(3):415–421. doi:10.1016/j.ejpb.2011.03.005

    Article  PubMed  CAS  Google Scholar 

  • Simonsen L, Jorgensen A, Benfeldt E, Groth L (2004) Differentiated in vivo skin penetration of salicylic compounds in hairless rats measured by cutaneous microdialysis. Eur J Pharm Sci 21(2–3):379–388

    Article  PubMed  CAS  Google Scholar 

  • Stagni G, Shukla C (2003) Pharmacokinetics of methotrexate in rabbit skin and plasma after IV-bolus and iontophoretic administrations. J Controlled Release 93(3):283–292

    Article  CAS  Google Scholar 

  • Stagni G, O’Donnell D, Liu YJ, Kellogg DL, Morgan T, Shepherd AM (2000) Intradermal microdialysis: kinetics of iontophoretically delivered propranolol in forearm dermis. J Controlled Release 63(3):331–339

    Article  CAS  Google Scholar 

  • Stagni G, Ali ME, Weng D (2004) Pharmacokinetics of acyclovir in rabbit skin after IV-bolus, ointment, and iontophoretic administrations. Int J Pharm 274(1–2):201–211

    Article  PubMed  CAS  Google Scholar 

  • Stenken JA, Church MK, Gill CA, Clough GF (2010) How minimally invasive is microdialysis sampling? A cautionary note for cytokine collection in human skin and other clinical studies. AAPS J 12(1):73–78. doi:10.1208/s12248-009-9163-7

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Stenken JA (2003) Improving microdialysis extraction efficiency of lipophilic eicosanoids. J Pharmaceut Biomed Anal 33(5):1059–1071

    Article  CAS  Google Scholar 

  • Tegeder I, Muth-Selbach U, Lotsch J, Rusing G, Oelkers R, Brune K, Meller S, Kelm GR, Sorgel F, Geisslinger G (1999) Application of microdialysis for the determination of muscle and subcutaneous tissue concentrations after oral and topical ibuprofen administration. Clin Pharmacol Ther 65(4):357–368

    Article  PubMed  CAS  Google Scholar 

  • Tegeder I, Brautigam L, Podda M, Meier S, Kaufmann R, Geisslinger G, Grundmann-Kollmann M (2002) Time course of 8-methoxypsoralen concentrations in skin and plasma after topical (bath and cream) and oral administration of 8-methoxypsoralen. Clin Pharmacol Ther 71(3):153–161

    Article  PubMed  CAS  Google Scholar 

  • Tettey-Amlalo RN, Kanfer I, Skinner MF, Benfeldt E, Verbeeck RK (2009) Application of dermal microdialysis for the evaluation of bioequivalence of a ketoprofen topical gel. Eur J Pharm Sci 36(2–3):219–225

    Article  PubMed  CAS  Google Scholar 

  • Tsai JC, Shen LC, Sheu HM, Lu CC (2003) Tape stripping and sodium dodecyl sulfate treatment increase the molecular weight cutoff of polyethylene glycol penetration across murine skin. Arch Dermatol Res 295(4):169–174

    Article  PubMed  CAS  Google Scholar 

  • US-FDA (1998) Guidance for industry: topical dermatological drug product NDAs and ANDAs- in vivo bioavilability, bioequivalence, in vitro release, and associated studies. Draft Guidance, June 1998, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER)

    Google Scholar 

  • US-FDA (2002) Guidance for industry bioavailability and bioequivalence studies for orally administered drug products—general considerations. http://www.fda.gov/cder/guidance/index.htm

  • US-FDA (2004) Challenge and opportunity on the critical path to new medicinal products

    Google Scholar 

  • Ward KW, Medina SJ, Portelli ST, Doan KMM, Spengler MD, Ben MM, Lundberg D, Levy MA, Chen EP (2003) Enhancement of in vitro and in vivo microdialysis recovery of SB-265123 using intralipid (R) and encapsin (R) as perfusates. Biopharm Drug Dispos 24(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Wennberg AM, Larko O, Lonnroth P, Larson G, Krogstad AL (2000) Delta-aminolevulinic acid in superficial basal cell carcinomas and normal skin—a microdialysis and perfusion study. Clin Exp Dermatol 25(4):317–322

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Benfeldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Benfeldt, E. (2013). Skin and Transdermal Drug Delivery. In: Müller, M. (eds) Microdialysis in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4815-0_7

Download citation

Publish with us

Policies and ethics